337 lines
7.1 KiB
Markdown
337 lines
7.1 KiB
Markdown
|
# Complex.js - ℂ in JavaScript
|
|||
|
|
|||
|
[![NPM Package](https://img.shields.io/npm/v/complex.js.svg?style=flat)](https://npmjs.org/package/complex.js "View this project on npm")
|
|||
|
[![MIT license](http://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)
|
|||
|
|
|||
|
Complex.js is a well tested JavaScript library to work with [complex number arithmetic](https://raw.org/book/analysis/complex-numbers/) in JavaScript. It implements every elementary complex number manipulation function and the API is intentionally similar to [Fraction.js](https://github.com/rawify/Fraction.js). Furthermore, it's the basis of [Polynomial.js](https://github.com/infusion/Polynomial.js) and [Math.js](https://github.com/josdejong/mathjs).
|
|||
|
|
|||
|
|
|||
|
## Examples
|
|||
|
|
|||
|
|
|||
|
```js
|
|||
|
let Complex = require('complex.js');
|
|||
|
|
|||
|
let c = new Complex("99.3+8i");
|
|||
|
c.mul({re: 3, im: 9}).div(4.9).sub(3, 2);
|
|||
|
```
|
|||
|
|
|||
|
A classical use case for complex numbers is solving quadratic equations `ax² + bx + c = 0` for all `a, b, c ∈ ℝ`:
|
|||
|
|
|||
|
```js
|
|||
|
|
|||
|
function quadraticRoot(a, b, c) {
|
|||
|
let sqrt = Complex(b * b - 4 * a * c).sqrt()
|
|||
|
let x1 = Complex(-b).add(sqrt).div(2 * a)
|
|||
|
let x2 = Complex(-b).sub(sqrt).div(2 * a)
|
|||
|
return {x1, x2}
|
|||
|
}
|
|||
|
|
|||
|
// quadraticRoot(1, 4, 5) -> -2 ± i
|
|||
|
```
|
|||
|
|
|||
|
For cubic roots have a look at [RootFinder](https://github.com/rawify/RootFinder.js) which uses Complex.js.
|
|||
|
|
|||
|
## Parser
|
|||
|
|
|||
|
|
|||
|
Any function (see below) as well as the constructor of the *Complex* class parses its input like this.
|
|||
|
|
|||
|
You can pass either Objects, Doubles or Strings.
|
|||
|
|
|||
|
### Objects
|
|||
|
|
|||
|
```javascript
|
|||
|
new Complex({re: real, im: imaginary});
|
|||
|
new Complex({arg: angle, abs: radius});
|
|||
|
new Complex({phi: angle, r: radius});
|
|||
|
new Complex([real, imaginary]); // Vector/Array syntax
|
|||
|
```
|
|||
|
If there are other attributes on the passed object, they're not getting preserved and have to be merged manually.
|
|||
|
|
|||
|
### Doubles
|
|||
|
|
|||
|
```javascript
|
|||
|
new Complex(55.4);
|
|||
|
```
|
|||
|
|
|||
|
### Strings
|
|||
|
|
|||
|
```javascript
|
|||
|
new Complex("123.45");
|
|||
|
new Complex("15+3i");
|
|||
|
new Complex("i");
|
|||
|
```
|
|||
|
|
|||
|
### Two arguments
|
|||
|
|
|||
|
```javascript
|
|||
|
new Complex(3, 2); // 3+2i
|
|||
|
```
|
|||
|
|
|||
|
## Attributes
|
|||
|
|
|||
|
|
|||
|
Every complex number object exposes its real and imaginary part as attribute `re` and `im`:
|
|||
|
|
|||
|
```javascript
|
|||
|
let c = new Complex(3, 2);
|
|||
|
|
|||
|
console.log("Real part:", c.re); // 3
|
|||
|
console.log("Imaginary part:", c.im); // 2
|
|||
|
```
|
|||
|
|
|||
|
## Functions
|
|||
|
|
|||
|
|
|||
|
Complex sign()
|
|||
|
---
|
|||
|
Returns the complex sign, defined as the complex number normalized by it's absolute value
|
|||
|
|
|||
|
Complex add(n)
|
|||
|
---
|
|||
|
Adds another complex number
|
|||
|
|
|||
|
Complex sub(n)
|
|||
|
---
|
|||
|
Subtracts another complex number
|
|||
|
|
|||
|
Complex mul(n)
|
|||
|
---
|
|||
|
Multiplies the number with another complex number
|
|||
|
|
|||
|
Complex div(n)
|
|||
|
---
|
|||
|
Divides the number by another complex number
|
|||
|
|
|||
|
Complex pow(exp)
|
|||
|
---
|
|||
|
Returns the number raised to the complex exponent (Note: `Complex.ZERO.pow(0) = Complex.ONE` by convention)
|
|||
|
|
|||
|
Complex sqrt()
|
|||
|
---
|
|||
|
Returns the complex square root of the number
|
|||
|
|
|||
|
Complex exp(n)
|
|||
|
---
|
|||
|
Returns `e^n` with complex exponent `n`.
|
|||
|
|
|||
|
Complex log()
|
|||
|
---
|
|||
|
Returns the natural logarithm (base `E`) of the actual complex number
|
|||
|
|
|||
|
_Note:_ The logarithm to a different base can be calculated with `z.log().div(Math.log(base))`.
|
|||
|
|
|||
|
double abs()
|
|||
|
---
|
|||
|
Calculates the magnitude of the complex number
|
|||
|
|
|||
|
double arg()
|
|||
|
---
|
|||
|
Calculates the angle of the complex number
|
|||
|
|
|||
|
Complex inverse()
|
|||
|
---
|
|||
|
Calculates the multiplicative inverse of the complex number (1 / z)
|
|||
|
|
|||
|
Complex conjugate()
|
|||
|
---
|
|||
|
Calculates the conjugate of the complex number (multiplies the imaginary part with -1)
|
|||
|
|
|||
|
Complex neg()
|
|||
|
---
|
|||
|
Negates the number (multiplies both the real and imaginary part with -1) in order to get the additive inverse
|
|||
|
|
|||
|
Complex floor([places=0])
|
|||
|
---
|
|||
|
Floors the complex number parts towards zero
|
|||
|
|
|||
|
Complex ceil([places=0])
|
|||
|
---
|
|||
|
Ceils the complex number parts off zero
|
|||
|
|
|||
|
Complex round([places=0])
|
|||
|
---
|
|||
|
Rounds the complex number parts
|
|||
|
|
|||
|
boolean equals(n)
|
|||
|
---
|
|||
|
Checks if both numbers are exactly the same, if both numbers are infinite they
|
|||
|
are considered **not** equal.
|
|||
|
|
|||
|
boolean isNaN()
|
|||
|
---
|
|||
|
Checks if the given number is not a number
|
|||
|
|
|||
|
boolean isFinite()
|
|||
|
---
|
|||
|
Checks if the given number is finite
|
|||
|
|
|||
|
Complex clone()
|
|||
|
---
|
|||
|
Returns a new Complex instance with the same real and imaginary properties
|
|||
|
|
|||
|
Array toVector()
|
|||
|
---
|
|||
|
Returns a Vector of the actual complex number with two components
|
|||
|
|
|||
|
String toString()
|
|||
|
---
|
|||
|
Returns a string representation of the actual number. As of v1.9.0 the output is a bit more human readable
|
|||
|
|
|||
|
```javascript
|
|||
|
new Complex(1, 2).toString(); // 1 + 2i
|
|||
|
new Complex(0, 1).toString(); // i
|
|||
|
new Complex(9, 0).toString(); // 9
|
|||
|
new Complex(1, 1).toString(); // 1 + i
|
|||
|
```
|
|||
|
|
|||
|
double valueOf()
|
|||
|
---
|
|||
|
Returns the real part of the number if imaginary part is zero. Otherwise `null`
|
|||
|
|
|||
|
|
|||
|
## Trigonometric functions
|
|||
|
|
|||
|
The following trigonometric functions are defined on Complex.js:
|
|||
|
|
|||
|
| Trig | Arcus | Hyperbolic | Area-Hyperbolic |
|
|||
|
|------|-------|------------|------------------|
|
|||
|
| sin() | asin() | sinh() | asinh() |
|
|||
|
| cos() | acos() | cosh() | acosh() |
|
|||
|
| tan() | atan() | tanh() | atanh() |
|
|||
|
| cot() | acot() | coth() | acoth() |
|
|||
|
| sec() | asec() | sech() | asech() |
|
|||
|
| csc() | acsc() | csch() | acsch() |
|
|||
|
|
|||
|
|
|||
|
## Geometric Equivalence
|
|||
|
|
|||
|
|
|||
|
Complex numbers can also be seen as a vector in the 2D space. Here is a simple overview of basic operations and how to implement them with complex.js:
|
|||
|
|
|||
|
New vector
|
|||
|
---
|
|||
|
```js
|
|||
|
let v1 = new Complex(1, 0);
|
|||
|
let v2 = new Complex(1, 1);
|
|||
|
```
|
|||
|
|
|||
|
Scale vector
|
|||
|
---
|
|||
|
```js
|
|||
|
scale(v1, factor):= v1.mul(factor)
|
|||
|
```
|
|||
|
|
|||
|
Vector norm
|
|||
|
---
|
|||
|
```js
|
|||
|
norm(v):= v.abs()
|
|||
|
```
|
|||
|
|
|||
|
Translate vector
|
|||
|
---
|
|||
|
```js
|
|||
|
translate(v1, v2):= v1.add(v2)
|
|||
|
```
|
|||
|
|
|||
|
Rotate vector around center
|
|||
|
---
|
|||
|
```js
|
|||
|
rotate(v, angle):= v.mul({abs: 1, arg: angle})
|
|||
|
```
|
|||
|
|
|||
|
Rotate vector around a point
|
|||
|
---
|
|||
|
```js
|
|||
|
rotate(v, p, angle):= v.sub(p).mul({abs: 1, arg: angle}).add(p)
|
|||
|
```
|
|||
|
|
|||
|
Distance to another vector
|
|||
|
---
|
|||
|
```js
|
|||
|
distance(v1, v2):= v1.sub(v2).abs()
|
|||
|
```
|
|||
|
|
|||
|
## Constants
|
|||
|
|
|||
|
|
|||
|
Complex.ZERO
|
|||
|
---
|
|||
|
A complex zero value (south pole on the Riemann Sphere)
|
|||
|
|
|||
|
Complex.ONE
|
|||
|
---
|
|||
|
A complex one instance
|
|||
|
|
|||
|
Complex.INFINITY
|
|||
|
---
|
|||
|
A complex infinity value (north pole on the Riemann Sphere)
|
|||
|
|
|||
|
Complex.NAN
|
|||
|
---
|
|||
|
A complex NaN value (not on the Riemann Sphere)
|
|||
|
|
|||
|
Complex.I
|
|||
|
---
|
|||
|
An imaginary number i instance
|
|||
|
|
|||
|
Complex.PI
|
|||
|
---
|
|||
|
A complex PI instance
|
|||
|
|
|||
|
Complex.E
|
|||
|
---
|
|||
|
A complex euler number instance
|
|||
|
|
|||
|
Complex.EPSILON
|
|||
|
---
|
|||
|
A small epsilon value used for `equals()` comparison in order to circumvent double imprecision.
|
|||
|
|
|||
|
|
|||
|
## Installation
|
|||
|
|
|||
|
Installing complex.js is as easy as cloning this repo or use one of the following command:
|
|||
|
|
|||
|
|
|||
|
```bash
|
|||
|
npm install complex.js
|
|||
|
```
|
|||
|
|
|||
|
## Using Complex.js with the browser
|
|||
|
|
|||
|
```html
|
|||
|
<script src="complex.min.js"></script>
|
|||
|
<script>
|
|||
|
console.log(Complex("4+3i"));
|
|||
|
</script>
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
## Coding Style
|
|||
|
|
|||
|
As every library I publish, Complex.js is also built to be as small as possible after compressing it with Google Closure Compiler in advanced mode. Thus the coding style orientates a little on maxing-out the compression rate. Please make sure you keep this style if you plan to extend the library.
|
|||
|
|
|||
|
## Building the library
|
|||
|
|
|||
|
After cloning the Git repository run:
|
|||
|
|
|||
|
```
|
|||
|
npm install
|
|||
|
npm run build
|
|||
|
```
|
|||
|
|
|||
|
## Run a test
|
|||
|
|
|||
|
Testing the source against the shipped test suite is as easy as
|
|||
|
|
|||
|
```
|
|||
|
npm run test
|
|||
|
```
|
|||
|
|
|||
|
## Copyright and Licensing
|
|||
|
|
|||
|
Copyright (c) 2024, [Robert Eisele](https://raw.org/)
|
|||
|
Licensed under the MIT license.
|