MARK ALLEN WEISS

DATA STRUCTURES

AND

ALGORITHM ANALYSIS

Fourth Edition

Data Structures
and Algorithm
Analysis In

C++

This page intentionally left blank

Fourth Edition

Data Structures
and Algorithm
Analysis in

C++

Mark Allen Weiss

Florida International University ..

PEARSON |

Editorial Director, ECS: Marcia Horton Cover Designer: Bruce Kenselaar

Executive Editor: Tracy Johnson Permissions Supervisor: Michael Joyce

Editorial Assistant: Jenah Blitz-Stoehr Permissions Administrator: Jenell Forschler
Director of Marketing: Christy Lesko Cover Image: (© De-kay | Dreamstime.com
Marketing Manager: Yez Alayan Media Project Manager: Renata Butera

Senior Marketing Coordinator: Kathryn Ferranti Full-Service Project Management: Integra Software
Marketing Assistant: Jon Bryant Services Pvt. Ltd.

Director of Production: Erin Gregg Composition: Integra Software Services Pvt. Ltd.
Senior Managing Editor: Scott Disanno Text and Cover Printer/Binder: Courier Westford

Senior Production Project Manager: Marilyn Lloyd
Manufacturing Buyer: Linda Sager
Art Director: Jayne Conte

Copyright © 2014, 2006, 1999 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved.
Printed in the United States of America. This publication is protected by Copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request
to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Weiss, Mark Allen.
Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida International University. — Fourth
edition.
pages cm
ISBN-13: 978-0-13-284737-7 (alk. paper)
ISBN-10: 0-13-284737-X (alk. paper)
1. C++ (Computer program language) 2. Data structures (Computer science) 3. Computer algorithms. I. Title.
QA76.73.C153W46 2014
005.7'3—dc23
2013011064

10 9 87 6 5 4 3 21

PEARSON ISBN-10: 0-13-284737-X
www.pearsonhighered.com ISBN-13: 978-0-13-284737-7

www.pearsonhighered.com

To my kind, brilliant, and inspiring Sara.

This page intentionally left blank

. CONTENTS

Preface

XV

Chapter 1 Programming: A General Overview 1

1.1 'What’s This Book About? 1
1.2 Mathematics Review 2

1.3
1.4

1.5

1.2.1
122
1.2.3
12.4
1.2.5

Exponents 3
Logarithms 3

Series 4

Modular Arithmetic 5
The PWord 6

A Brief Introduction to Recursion 8
C++ Classes 12

14.1
1.4.2
1.4.3
1.4.4

Basic class Syntax 12

Extra Constructor Syntax and Accessors 13
Separation of Interface and Implementation 16
vector and string 19

C++ Details 21

1.5.1
1.52
1.53
1.54
1.55
1.5.6

1.5.7

Pointers 21

Lvalues, Rvalues, and References 23

Parameter Passing 25

Return Passing 27

std::swap and std::move 29

The Big-Five: Destructor, Copy Constructor, Move Constructor, Copy
Assignment operator=, Move Assignment operator= 30

C-style Arrays and Strings 35

1.6 Templates 36

1.7

1.6.1
1.6.2
1.6.3
1.6.4
1.6.5

1.7.1
1.7.2

Function Templates 37

Class Templates 38

Object, Comparable, and an Example 39
Function Objects 41

Separate Compilation of Class Templates 44

Using Matrices 44

The Data Members, Constructor, and Basic Accessors 44
operator[] 45

vii

Contents

1.7.3 Big-Five 46
Summary 46
Exercises 46
References 48

Chapter 2 Algorithm Analysis

2.1
2.2
23
2.4

Mathematical Background 51

Model 54
What to Analyze 54
Running-Time Calculations 57

2.4.1 A Simple Example 58

242 General Rules 58

2.4.3 Solutions for the Maximum Subsequence
Sum Problem 60

2.44 Logarithms in the Running Time 66

2.4.5 Limitations of Worst-Case Analysis 70

Summary 70

Exercises 71

References 76

Chapter 3 Lists, Stacks, and Queues

3.1
3.2

3.3

3.4
3.5
3.6

3.7

Abstract Data Types (ADTs) 77

The List ADT 78

3.2.1 Simple Array Implementation of Lists 78
3.2.2 Simple Linked Lists 79

vector and Tist in the STL 80

3.3.1 lterators 82

3.3.2 Example: Using erase on a List 83
3.3.3 const_iterators 84

Implementation of vector 86
Implementation of Tist 91

The Stack ADT 103

3.6.1 Stack Model 103

3.6.2 Implementation of Stacks 104

3.6.3 Applications 104

The Queue ADT 112

3.7.1 Queue Model 113

3.7.2 Array Implementation of Queues 113
3.7.3 Applications of Queues 115
Summary 116

Exercises 116

51

77

Contents

Chapter 4 Trees 121

4.1

Preliminaries 121
4.1.1 TImplementation of Trees 122
4.1.2 Tree Traversals with an Application 123

4.2 Binary Trees 126
4.2.1 TImplementation 128
4.2.2 An Example: Expression Trees 128
4.3 The Search Tree ADT—Binary Search Trees 132
4.3.1 contains 134
4.3.2 findMin and findMax 135
4.3.3 insert 136
434 remove 139
4.3.5 Destructor and Copy Constructor 141
4.3.6 Average-Case Analysis 141
4.4 AVL Trees 144
4.4.1 Single Rotation 147
4.4.2 Double Rotation 149
4.5 Splay Trees 158
4.5.1 A Simple Idea (That Does Not Work) 158
4.5.2 Splaying 160
4.6 Tree Traversals (Revisited) 166
4.7 B-Trees 168
4.8 Sets and Maps in the Standard Library 173
4.8.1 Sets 173
4.8.2 Maps 174
4.8.3 Implementation of set andmap 175
4.8.4 An Example That Uses Several Maps 176
Summary 181
Exercises 182
References 189
Chapter 5 Hashing 193
5.1 General Idea 193
5.2 Hash Function 194
5.3 Separate Chaining 196
5.4 Hash Tables without Linked Lists 201
5.4.1 Linear Probing 201
5.4.2 Quadratic Probing 202
5.4.3 Double Hashing 207
5.5 Rehashing 208
5.6 Hash Tables in the Standard Library 210

Contents

5.7 Hash Tables with Worst-Case O(1) Access 212
5.7.1 Perfect Hashing 213
5.7.2 Cuckoo Hashing 215
5.7.3 Hopscotch Hashing 227
5.8 Universal Hashing 230
5.9 Extendible Hashing 233
Summary 236
Exercises 237
References 241

Chapter 6 Priority Queues (Heaps)

6.1 Model 245

6.2 Simple Implementations 246

6.3 Binary Heap 247
6.3.1 Structure Property 247
6.3.2 Heap-Order Property 248
6.3.3 Basic Heap Operations 249
6.3.4 Other Heap Operations 252

6.4 Applications of Priority Queues 257
6.4.1 The Selection Problem 258
6.4.2 Event Simulation 259

6.5 d-Heaps 260

6.6 Leftist Heaps 261
6.6.1 Leftist Heap Property 261
6.6.2 Leftist Heap Operations 262

6.7 Skew Heaps 269

6.8 Binomial Queues 271
6.8.1 Binomial Queue Structure 271
6.8.2 Binomial Queue Operations 271
6.8.3 Implementation of Binomial Queues 276

6.9 Priority Queues in the Standard Library 282
Summary 283
Exercises 283
References 288

Chapter 7 Sorting

7.1 Preliminaries 291

7.2 Insertion Sort 292
7.2.1 The Algorithm 292
7.2.2 STL Implementation of Insertion Sort 293
7.2.3 Analysis of Insertion Sort 294

7.3 A Lower Bound for Simple Sorting Algorithms 295

245

291

7.4 Shellsort 296

7.4.1 Worst-Case Analysis of Shellsort 297
7.5 Heapsort 300

7.5.1 Analysis of Heapsort 301
7.6 Mergesort 304

7.6.1 Analysis of Mergesort 306
7.7 Quicksort 309

7.7.1 Picking the Pivot 311

7.7.2 Partitioning Strategy 313

7.7.3 Small Arrays 315

7.7.4 Actual Quicksort Routines 315

7.7.5 Analysis of Quicksort 318

7.7.6 A Linear-Expected-Time Algorithm for Selection 321
7.8 A General Lower Bound for Sorting 323

7.8.1 Decision Trees 323
7.9 Decision-Tree Lower Bounds for Selection Problems 325
7.10 Adversary Lower Bounds 328
7.11 Linear-Time Sorts: Bucket Sort and Radix Sort 331
7.12 External Sorting 336

7.12.1 Why We Need New Algorithms 336

7.12.2 Model for External Sorting 336

7.12.3 The Simple Algorithm 337

7.12.4 Multiway Merge 338

7.12.5 Polyphase Merge 339

7.12.6 Replacement Selection 340

Summary 341

Exercises 341

References 347

Chapter 8 The Disjoint Sets Class

8.1 Equivalence Relations 351

8.2 The Dynamic Equivalence Problem 352

8.3 Basic Data Structure 353

8.4 Smart Union Algorithms 357

8.5 Path Compression 360

8.6 Worst Case for Union-by-Rank and Path Compression 361
8.6.1 Slowly Growing Functions 362
8.6.2 An Analysis by Recursive Decomposition 362
8.6.3 An O(M log* N) Bound 369
8.64 AnO(M a(M,N))Bound 370

8.7 An Application 372

Contents xi

351

xii Contents

Summary 374
Exercises 375
References 376

Chapter 9 Graph Algorithms

9.1

9.2
9.3

9.4

9.5

9.6

9.7

Definitions 379

9.1.1 Representation of Graphs 380
Topological Sort 382

Shortest-Path Algorithms 386

9.3.1 Unweighted Shortest Paths 387
9.3.2 Dijkstra’s Algorithm 391

9.3.3 Graphs with Negative Edge Costs 400
9.3.4 Acyclic Graphs 400

9.3.5 All-Pairs Shortest Path 404

9.3.6 Shortest Path Example 404
Network Flow Problems 406

9.4.1 A Simple Maximum-Flow Algorithm 408
Minimum Spanning Tree 413

9.5.1 Prim5 Algorithm 414

9.5.2 Kruskals Algorithm 417
Applications of Depth-First Search 419
9.6.1 Undirected Graphs 420

9.6.2 Biconnectivity 421

9.6.3 Euler Circuits 425

9.6.4 Directed Graphs 429

9.6.5 Finding Strong Components 431
Introduction to NP-Completeness 432
9.7.1 Easyvs. Hard 433

9.7.2 The Class NP 434

9.7.3 NP-Complete Problems 434
Summary 437

Exercises 437

References 445

Chapter 10 Algorithm Design Techniques
10.1 Greedy Algorithms 449

10.1.1 A Simple Scheduling Problem 450
10.1.2 Huffman Codes 453
10.1.3 Approximate Bin Packing 459

10.2 Divide and Conquer 467

10.2.1 Running Time of Divide-and-Conquer Algorithms
10.2.2 Closest-Points Problem 470

468

379

449

Contents xiii

10.2.3 The Selection Problem 475
10.2.4 Theoretical Improvements for Arithmetic Problems 478
10.3 Dynamic Programming 482
10.3.1 Using a Table Instead of Recursion 483
10.3.2 Ordering Matrix Multiplications = 485
10.3.3 Optimal Binary Search Tree 487
10.3.4 All-Pairs Shortest Path 491
10.4 Randomized Algorithms 494
10.4.1 Random-Number Generators 495
10.4.2 Skip Lists 500
10.4.3 Primality Testing 503
10.5 Backtracking Algorithms 506
10.5.1 The Turnpike Reconstruction Problem 506
10.5.2 Games 511
Summary 518
Exercises 518
References 527

Chapter 11 Amortized Analysis 533

11.1 An Unrelated Puzzle 534

11.2 Binomial Queues 534

11.3 Skew Heaps 539

11.4 Fibonacci Heaps 541
11.4.1 Cutting Nodes in Leftist Heaps 542
11.4.2 Lazy Merging for Binomial Queues 544
11.4.3 The Fibonacci Heap Operations 548
11.4.4 Proof of the Time Bound 549

11.5 Splay Trees 551
Summary 555
Exercises 556
References 557

Chapter 12 Advanced Data Structures
and Implementation 559

12.1 Top-Down Splay Trees 559

12.2 Red-Black Trees 566
12.2.1 Bottom-Up Insertion 567
12.2.2 Top-Down Red-Black Trees 568
12.2.3 Top-Down Deletion 570

12.3 Treaps 576

xiv Contents

12.4 Suffix Arrays and Suffix Trees 579

12.4.1 Suffix Arrays 580

12.4.2 Suffix Trees 583

12.4.3 Linear-Time Construction of Suffix Arrays and Suffix Trees 586
12.5 k-d Trees 596
12.6 Pairing Heaps 602

Summary 606

Exercises 608

References 612

Appendix A Separate Compilation of
Class Templates 615

A1 Everything in the Header 616
A2 Explicit Instantiation 616

Index 619

Purpose/Goals

The fourth edition of Data Structures and Algorithm Analysis in C++ describes data structures,
methods of organizing large amounts of data, and algorithm analysis, the estimation of the
running time of algorithms. As computers become faster and faster, the need for programs
that can handle large amounts of input becomes more acute. Paradoxically, this requires
more careful attention to efficiency, since inefficiencies in programs become most obvious
when input sizes are large. By analyzing an algorithm before it is actually coded, students
can decide if a particular solution will be feasible. For example, in this text students look at
specific problems and see how careful implementations can reduce the time constraint for
large amounts of data from centuries to less than a second. Therefore, no algorithm or data
structure is presented without an explanation of its running time. In some cases, minute
details that affect the running time of the implementation are explored.

Once a solution method is determined, a program must still be written. As computers
have become more powerful, the problems they must solve have become larger and more
complex, requiring development of more intricate programs. The goal of this text is to teach
students good programming and algorithm analysis skills simultaneously so that they can
develop such programs with the maximum amount of efficiency.

This book is suitable for either an advanced data structures course or a first-year
graduate course in algorithm analysis. Students should have some knowledge of inter-
mediate programming, including such topics as pointers, recursion, and object-based
programming, as well as some background in discrete math.

Approach

Although the material in this text is largely language-independent, programming requires
the use of a specific language. As the title implies, we have chosen C++ for this book.

C++ has become a leading systems programming language. In addition to fixing many
of the syntactic flaws of C, C++ provides direct constructs (the class and template) to
implement generic data structures as abstract data types.

The most difficult part of writing this book was deciding on the amount of C++ to
include. Use too many features of C++ and one gets an incomprehensible text; use too few
and you have little more than a C text that supports classes.

The approach we take is to present the material in an object-based approach. As such,
there is almost no use of inheritance in the text. We use class templates to describe generic
data structures. We generally avoid esoteric C++ features and use the vector and string
classes that are now part of the C++ standard. Previous editions have implemented class
templates by separating the class template interface from its implementation. Although
this is arguably the preferred approach, it exposes compiler problems that have made it

Preface

difficult for readers to actually use the code. As a result, in this edition the online code
represents class templates as a single unit, with no separation of interface and implementa-
tion. Chapter 1 provides a review of the C++ features that are used throughout the text and
describes our approach to class templates. Appendix A describes how the class templates
could be rewritten to use separate compilation.

Complete versions of the data structures, in both C++ and Java, are available on
the Internet. We use similar coding conventions to make the parallels between the two
languages more evident.

Summary of the Most Significant Changes in the Fourth Edition

The fourth edition incorporates numerous bug fixes, and many parts of the book have
undergone revision to increase the clarity of presentation. In addition,

 Chapter 4 includes implementation of the AVL tree deletion algorithm—a topic often
requested by readers.

Chapter 5 has been extensively revised and enlarged and now contains material on
two newer algorithms: cuckoo hashing and hopscotch hashing. Additionally, a new
section on universal hashing has been added. Also new is a brief discussion of the
unordered_set and unordered_map class templates introduced in C++11.

* Chapter 6 is mostly unchanged; however, the implementation of the binary heap makes
use of move operations that were introduced in C++11.

* Chapter 7 now contains material on radix sort, and a new section on lower-bound
proofs has been added. Sorting code makes use of move operations that were
introduced in C++11.

* Chapter 8 uses the new union/find analysis by Seidel and Sharir and shows the
O(M a(M,N)) bound instead of the weaker O(M log* N) bound in prior editions.
Chapter 12 adds material on suffix trees and suffix arrays, including the linear-time
suffix array construction algorithm by Karkkainen and Sanders (with implementation).
The sections covering deterministic skip lists and AA-trees have been removed.

* Throughout the text, the code has been updated to use C++11. Notably, this means
use of the new C++11 features, including the auto keyword, the range for loop, move
construction and assignment, and uniform initialization.

Overview

Chapter 1 contains review material on discrete math and recursion. I believe the only way
to be comfortable with recursion is to see good uses over and over. Therefore, recursion
is prevalent in this text, with examples in every chapter except Chapter 5. Chapter 1 also
includes material that serves as a review of basic C++. Included is a discussion of templates
and important constructs in C++ class design.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic analysis
and its major weaknesses. Many examples are provided, including an in-depth explana-
tion of logarithmic running time. Simple recursive programs are analyzed by intuitively
converting them into iterative programs. More complicated divide-and-conquer programs
are introduced, but some of the analysis (solving recurrence relations) is implicitly delayed
until Chapter 7, where it is performed in detail.

Preface

Chapter 3 covers lists, stacks, and queues. This chapter includes a discussion of the STL
vector and Tist classes, including material on iterators, and it provides implementations
of a significant subset of the STL vector and 1ist classes.

Chapter 4 covers trees, with an emphasis on search trees, including external search
trees (B-trees). The UNIX file system and expression trees are used as examples. AVL trees
and splay trees are introduced. More careful treatment of search tree implementation details
is found in Chapter 12. Additional coverage of trees, such as file compression and game
trees, is deferred until Chapter 10. Data structures for an external medium are considered
as the final topic in several chapters. Included is a discussion of the STL set and map classes,
including a significant example that illustrates the use of three separate maps to efficiently
solve a problem.

Chapter 5 discusses hash tables, including the classic algorithms such as sepa-
rate chaining and linear and quadratic probing, as well as several newer algorithms,
namely cuckoo hashing and hopscotch hashing. Universal hashing is also discussed, and
extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is additional
material on some of the theoretically interesting implementations of priority queues. The
Fibonacci heap is discussed in Chapter 11, and the pairing heap is discussed in Chapter 12.

Chapter 7 covers sorting. It is very specific with respect to coding details and analysis.
All the important general-purpose sorting algorithms are covered and compared. Four
algorithms are analyzed in detail: insertion sort, Shellsort, heapsort, and quicksort. New to
this edition is radix sort and lower bound proofs for selection-related problems. External
sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time. Thisis a
short and specific chapter that can be skipped if Kruskal’s algorithm is not discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not only
because they frequently occur in practice but also because their running time is so heavily
dependent on the proper use of data structures. Virtually all of the standard algorithms
are presented along with appropriate data structures, pseudocode, and analysis of running
time. To place these problems in a proper context, a short discussion on complexity theory
(including NP-completeness and undecidability) is provided.

Chapter 10 covers algorithm design by examining common problem-solving tech-
niques. This chapter is heavily fortified with examples. Pseudocode is used in these later
chapters so that the student’s appreciation of an example algorithm is not obscured by
implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters 4 and
6 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 covers search tree algorithms, the suffix tree and array, the k-d tree, and
the pairing heap. This chapter departs from the rest of the text by providing complete and
careful implementations for the search trees and pairing heap. The material is structured so
that the instructor can integrate sections into discussions from other chapters. For example,
the top-down red-black tree in Chapter 12 can be discussed along with AVL trees (in
Chapter 4).

Chapters 1 to 9 provide enough material for most one-semester data structures courses.
If time permits, then Chapter 10 can be covered. A graduate course on algorithm analysis
could cover chapters 7 to 11. The advanced data structures analyzed in Chapter 11 can
easily be referred to in the earlier chapters. The discussion of NP-completeness in Chapter 9

Preface

is far too brief to be used in such a course. You might find it useful to use an additional
work on NP-completeness to augment this text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material is pre-
sented. The last exercises may address the chapter as a whole rather than a specific section.
Difficult exercises are marked with an asterisk, and more challenging exercises have two
asterisks.

References

References are placed at the end of each chapter. Generally the references either are his-
torical, representing the original source of the material, or they represent extensions and
improvements to the results given in the text. Some references represent solutions to
exercises.

Supplements
The following supplements are available to all readers at http:/cssupport.pearsoncmg.com/

* Source code for example programs

¢ Errata

In addition, the following material is available only to qualified instructors at Pearson
Instructor Resource Center (www.pearsonhighered.convirc). Visit the IRC or contact your
Pearson Education sales representative for access.

* Solutions to selected exercises
* Figures from the book

e Errata

Acknowledgments
Many, many people have helped me in the preparation of books in this series. Some are
listed in other versions of the book; thanks to all.

As usual, the writing process was made easier by the professionals at Pearson. I'd like
to thank my editor, Tracy Johnson, and production editor, Marilyn Lloyd. My wonderful
wife Jill deserves extra special thanks for everything she does.

Finally, I'd like to thank the numerous readers who have sent e-mail messages and
pointed out errors or inconsistencies in earlier versions. My website www.cis.fiu.edu/~weiss
will also contain updated source code (in C++ and Java), an errata list, and a link to submit
bug reports.

M.AW
Miami, Florida

www.pearsonhighered.com/irc
www.cis..u.edu/~weiss
http://cssupport.pearsoncmg.com/

. cuapter 1

Programming: A General
Overview

In this chapter, we discuss the aims and goals of this text and briefly review programming
concepts and discrete mathematics. We will . ..

* See that how a program performs for reasonably large input is just as important as its
performance on moderate amounts of input.

» Summarize the basic mathematical background needed for the rest of the book.
* Briefly review recursion.

* Summarize some important features of C++ that are used throughout the text.

1.1 What'’s This Book About?

Suppose you have a group of N numbers and would like to determine the kth largest. This
is known as the selection problem. Most students who have had a programming course
or two would have no difficulty writing a program to solve this problem. There are quite a
few “obvious” solutions.

One way to solve this problem would be to read the N numbers into an array, sort the
array in decreasing order by some simple algorithm such as bubble sort, and then return
the element in position k.

A somewhat better algorithm might be to read the first k elements into an array and
sort them (in decreasing order). Next, each remaining element is read one by one. As a new
element arrives, it is ignored if it is smaller than the kth element in the array. Otherwise, it
is placed in its correct spot in the array, bumping one element out of the array. When the
algorithm ends, the element in the kth position is returned as the answer.

Both algorithms are simple to code, and you are encouraged to do so. The natural ques-
tions, then, are: Which algorithm is better? And, more important, Is either algorithm good
enough? A simulation using a random file of 30 million elements and k = 15,000,000
will show that neither algorithm finishes in a reasonable amount of time; each requires
several days of computer processing to terminate (albeit eventually with a correct answer).
An alternative method, discussed in Chapter 7, gives a solution in about a second. Thus,
although our proposed algorithms work, they cannot be considered good algorithms,

Chapter 1 Programming: A General Overview

AW N =
—- O 2 -
e e s o
[oF = . .
~ 0a v o

Figure 1.1 Sample word puzzle

because they are entirely impractical for input sizes that a third algorithm can handle in a
reasonable amount of time.

A second problem is to solve a popular word puzzle. The input consists of a two-
dimensional array of letters and a list of words. The object is to find the words in the puzzle.
These words may be horizontal, vertical, or diagonal in any direction. As an example, the
puzzle shown in Figure 1.1 contains the words this, two, fat, and that. The word this begins
at row 1, column 1, or (1,1), and extends to (1,4); two goes from (1,1) to (3,1); fat goes
from (4,1) to (2,3); and that goes from (4,4) to (1,1).

Again, there are at least two straightforward algorithms that solve the problem. For each
word in the word list, we check each ordered triple (row, column, orientation) for the pres-
ence of the word. This amounts to lots of nested for loops but is basically straightforward.

Alternatively, for each ordered quadruple (row, column, orientation, number of characters)
that doesn’t run off an end of the puzzle, we can test whether the word indicated is in the
word list. Again, this amounts to lots of nested for loops. It is possible to save some time
if the maximum number of characters in any word is known.

It is relatively easy to code up either method of solution and solve many of the real-life
puzzles commonly published in magazines. These typically have 16 rows, 16 columns, and
40 or so words. Suppose, however, we consider the variation where only the puzzle board is
given and the word list is essentially an English dictionary. Both of the solutions proposed
require considerable time to solve this problem and therefore might not be acceptable.
However, it is possible, even with a large word list, to solve the problem very quickly.

An important concept is that, in many problems, writing a working program is not
good enough. If the program is to be run on a large data set, then the running time becomes
an issue. Throughout this book we will see how to estimate the running time of a program
for large inputs and, more important, how to compare the running times of two programs
without actually coding them. We will see techniques for drastically improving the speed
of a program and for determining program bottlenecks. These techniques will enable us to
find the section of the code on which to concentrate our optimization efforts.

1.2 Mathematics Review

This section lists some of the basic formulas you need to memorize, or be able to derive,
and reviews basic proof techniques.

1.2 Mathematics Review

1.2.1 Exponents

XA
ﬁ — XA*B
(XA)B — XAB

XN 4 XN = 2xN £ x2N

1.2.2 Logarithms

In computer science, all logarithms are to the base 2 unless specified otherwise.

Definition 1.1
X4 = Bif and only if logy B = A

Several convenient equalities follow from this definition.

Theorem 1.1

log, B = ; AB,C>0A#1
0

Proof

Let X = log-B, Y = log-A, and Z = log, B. Then, by the definition of loga-
rithms, CX = B, C¥ = A, and A?> = B. Combining these three equalities yields
B = CX = (CY)?. Therefore, X = YZ, which implies Z = X/Y, proving the theorem.

Theorem 1.2

logAB =logA +1logB, A,B>0

Proof

Let X = logA, Y = logB, and Z = logAB. Then, assuming the default base of 2,
2X = A, 2Y = B, and 2¢ = AB. Combining the last three equalities yields
2%2Y = AB = 27 Therefore, X + Y = Z, which proves the theorem.

Some other useful formulas, which can all be derived in a similar manner, follow.

logA/B =logA — logB
log(AB) = BlogA
logX <X forallX >0

logl =0, log2=1 logl024=10, log1,048576 =20

Chapter 1 Programming: A General Overview

1.2.3 Series

The easiest formulas to remember are

N
sz — N+l _
i=0

and the companion,

In the latter formula, if 0 < A < 1, then

N 1
YA —
4 1—-A
i=0

and as N tends to oo, the sum approaches 1/(1 — A). These are the “geometric series”
formulas.

We can derive the last formula for Z?:OO AT (0 < A < 1)in the following manner. Let
S be the sum. Then

S=1+A+A A +AY A+
Then
AS=A+A+ A AV LA+

If we subtract these two equations (which is permissible only for a convergent series),
virtually all the terms on the right side cancel, leaving

S—AS=1

which implies that

We can use this same technique to compute Y o0, i/2%, a sum that occurs frequently.
We write

5—1+2+3+4+5+
T2 22 23 2% D5

and multiply by 2, obtaining

25—1+2+3+4+5+6+
o 2 22 23 2% D5

Subtracting these two equations yields

5—1+1+1+1+1+1+
o 2022 23 2%)5

Thus, S = 2.

1.2 Mathematics Review

Another type of common series in analysis is the arithmetic series. Any such series can
be evaluated from the basic formula:

i,_ NN+1) _ N?
LTy T
For instance, to find the sum 2 +5 +8 + --- + (3k — 1), rewrite it as 3(1 + 2 + 3 +
coo+R)—(A+14+14---+1), which is clearly 3k(k+1)/2 — k. Another way to remember
this is to add the first and last terms (total 3k + 1), the second and next-to-last terms (total
3k + 1), and so on. Since there are k/2 of these pairs, the total sum is k(3k + 1)/2, which
is the same answer as before.
The next two formulas pop up now and then but are fairly uncommon.

XN: , NIN+DQN+1) N3

17 = ~ —

= 6 3
N Nk—l—l

-k
~ k#—1
2 TESTRAS

i=1

When k = —1, the latter formula is not valid. We then need the following formula,
which is used far more in computer science than in other mathematical disciplines. The
numbers Hy are known as the harmonic numbers, and the sum is known as a harmonic
sum. The error in the following approximation tends to y ~ 0.57721566, which is known
as Euler’s constant.

N

1
Hy = Z n ~ log, N
i=1

These two formulas are just general algebraic manipulations:

N

> N = N

i=1

N N no—1
Y=Y "fH - f
i=1 i=1

i=l’lo

1.2.4 Modular Arithmetic

We say that A is congruent to B modulo N, written A = B (mod N), if N divides
A — B. Intuitively, this means that the remainder is the same when either A or B is
divided by N. Thus, 81 = 61 = 1 (mod 10). As with equality, if A = B (mod N), then
A+ C=B+ C(modN) and AD = BD (mod N).

Chapter 1 Programming: A General Overview

Often, N is a prime number. In that case, there are three important theorems:

First, if N is prime, then ab = 0 (mod N) is true if and only if a = 0 (mod N)
or b = 0 (mod N). In other words, if a prime number N divides a product of two
numbers, it divides at least one of the two numbers.

Second, if N is prime, then the equation ax = 1 (mod N) has a unique solution
(mod N) for all 0 < a < N. This solution, 0 < x < N, is the multiplicative inverse.
Third, if N is prime, then the equation x> = a (mod N) has either two solutions

(mod N) for all 0 < a < N, or it has no solutions.

There are many theorems that apply to modular arithmetic, and some of them require
extraordinary proofs in number theory. We will use modular arithmetic sparingly, and the
preceding theorems will suffice.

1.2.5 The P Word

The two most common ways of proving statements in data-structure analysis are proof
by induction and proof by contradiction (and occasionally proof by intimidation, used
by professors only). The best way of proving that a theorem is false is by exhibiting a
counterexample.

Proof by Induction

A proof by induction has two standard parts. The first step is proving a base case, that is,
establishing that a theorem is true for some small (usually degenerate) value(s); this step is
almost always trivial. Next, an inductive hypothesis is assumed. Generally this means that
the theorem is assumed to be true for all cases up to some limit k. Using this assumption,
the theorem is then shown to be true for the next value, which is typically k 4+ 1. This
proves the theorem (as long as k is finite).

As an example, we prove that the Fibonacci numbers, Fo = 1,F; = 1, F, =2, F3 = 3,
F4=5,..., F = Fi_1+F_,, satisfy F; < (5/3)!, fori > 1. (Some definitions have Fy = 0,
which shifts the series.) To do this, we first verify that the theorem is true for the trivial
cases. It is easy to verify that F1 = 1 < 5/3 and F, = 2 < 25/9; this proves the basis.
We assume that the theorem is true fori = 1,2, ..., k; this is the inductive hypothesis. To
prove the theorem, we need to show that Fp41 < (5/ 31 We have

Fr41 = Fr + Fr—1

by the definition, and we can use the inductive hypothesis on the right-hand side,
obtaining

Fop1 < (5/3)F + (5/3)F1
< (3/5)5/3)! +(3/5)2(5/3) !
< (3/5)5/3)! +(9/25)(5/3)F+!

which simplifies to

1.2 Mathematics Review

Fop1 < (3/5 +9/25)(5/3)*!
< (24/25)(5/3)k*!
< (5/3)k+1

proving the theorem.
As a second example, we establish the following theorem.

Theorem 1.3
IfN > 1, then YN, i2 = w

Proof

The proof is by induction. For the basis, it is readily seen that the theorem is true when
N = 1. For the inductive hypothesis, assume that the theorem is true for 1 < k < N.
We will establish that, under this assumption, the theorem is true for N 4+ 1. We have

N+1 N

Ziz = Ziz + (N + 1)?
i=1 i=1

Applying the inductive hypothesis, we obtain

N+1

Y oit= NN+ D6(2N+ DLty
i=1
2 1
N+ D) [%ww 1)}
2
N+ DW
_ (N+ DN +2)2N +3)
B 6
Thus,
Nz“iz _ (N DN+ D+ RN+ D +1]
6

i=1

proving the theorem.

Proof by Counterexample

The statement F, < k? is false. The easiest way to prove this is to compute Fj; =
144 > 112,

Proof by Contradiction

Proof by contradiction proceeds by assuming that the theorem is false and showing that this
assumption implies that some known property is false, and hence the original assumption
was erroneous. A classic example is the proof that there is an infinite number of primes. To
prove this, we assume that the theorem is false, so that there is some largest prime Pj. Let
P1,Py, ..., Py be all the primes in order and consider

Chapter 1 Programming: A General Overview

N =PP)P3---P,+1

Clearly, N is larger than Py, so, by assumption, N is not prime. However, none of
P1,Py, ..., Py divides N exactly, because there will always be a remainder of 1. This is a con-
tradiction, because every number is either prime or a product of primes. Hence, the original
assumption, that Py, is the largest prime, is false, which implies that the theorem is true.

1.3 A Brief Introduction to Recursion

Most mathematical functions that we are familiar with are described by a simple formula.
For instance, we can convert temperatures from Fahrenheit to Celsius by applying the
formula

C=5F—32)/9

Given this formula, it is trivial to write a C++ function; with declarations and braces
removed, the one-line formula translates to one line of C++.

Mathematical functions are sometimes defined in a less standard form. As an example,
we can define a function f, valid on nonnegative integers, that satisfies f(0) = 0 and
f(x) = 2f(x — 1) + x*. From this definition we see that f(1) = 1, f2) = 6, f(3) = 21,
and f(4) = 58. A function that is defined in terms of itself is called recursive. C++ allows
functions to be recursive.! It is important to remember that what C++ provides is merely
an attempt to follow the recursive spirit. Not all mathematically recursive functions are
efficiently (or correctly) implemented by C++5s simulation of recursion. The idea is that the
recursive function f ought to be expressible in only a few lines, just like a nonrecursive
function. Figure 1.2 shows the recursive implementation of f.

Lines 3 and 4 handle what is known as the base case, that is, the value for
which the function is directly known without resorting to recursion. Just as declaring
f() = 2f(x — 1) + x* is meaningless, mathematically, without including the fact that
f(0) = 0, the recursive C++ function doesn’t make sense without a base case. Line 6 makes
the recursive call.

I dint f(int x)

2

3 if(x ==0)

4 return 0;

5 else

6 return 2 * f(x - 1) + x * x;
7}

Figure 1.2 A recursive function

! Using recursion for numerical calculations is usually a bad idea. We have done so to illustrate the basic
points.

1.3 A Brief Introduction to Recursion

There are several important and possibly confusing points about recursion. A common
question is: Isn’t this just circular logic? The answer is that although we are defining a
function in terms of itself, we are not defining a particular instance of the function in terms
of itself. In other words, evaluating f(5) by computing f(5) would be circular. Evaluating
f(5) by computing f(4) is not circular—unless, of course, f(4) is evaluated by eventually
computing f(5). The two most important issues are probably the how and why questions.
In Chapter 3, the how and why issues are formally resolved. We will give an incomplete
description here.

It turns out that recursive calls are handled no differently from any others. If f is called
with the value of 4, then line 6 requires the computation of 2 % f(3) + 4 % 4. Thus, a call is
made to compute f(3). This requires the computation of 2 % f(2) 4+ 3% 3. Therefore, another
call is made to compute f(2). This means that 2 * f(1) 4 2 * 2 must be evaluated. To do so,
(1) is computed as 2xf(0)41x 1. Now, f(0) must be evaluated. Since this is a base case, we
know a priori that f(0) = 0. This enables the completion of the calculation for f(1), which
isnow seento be 1. Then f(2), f(3), and finally f(4) can be determined. All the bookkeeping
needed to keep track of pending function calls (those started but waiting for a recursive
call to complete), along with their variables, is done by the computer automatically. An
important point, however, is that recursive calls will keep on being made until a base case
is reached. For instance, an attempt to evaluate f(—1) will result in calls to f(—2), f(—3),
and so on. Since this will never get to a base case, the program won't be able to compute
the answer (which is undefined anyway). Occasionally, a much more subtle error is made,
which is exhibited in Figure 1.3. The error in Figure 1.3 is that bad(1) is defined, by line
6, to be bad(1). Obviously, this doesn't give any clue as to what bad(1) actually is. The
computer will thus repeatedly make calls to bad(1) in an attempt to resolve its values.
Eventually, its bookkeeping system will run out of space, and the program will terminate
abnormally. Generally, we would say that this function doesn’t work for one special case
but is correct otherwise. This isn't true here, since bad(2) calls bad(1). Thus, bad(2) cannot
be evaluated either. Furthermore, bad(3), bad(4), and bad(5) all make calls to bad(2). Since
bad(2) is not evaluable, none of these values are either. In fact, this program doesn’t work
for any nonnegative value of n, except 0. With recursive programs, there is no such thing
as a “special case.”

These considerations lead to the first two fundamental rules of recursion:

1. Base cases. You must always have some base cases, which can be solved without
recursion.

2. Making progress. For the cases that are to be solved recursively, the recursive call must
always be to a case that makes progress toward a base case.

1 int bad(int n)

2 |

3 if(n==0)

4 return 0;

5 else

6 return bad(n /3 +1) +n-1;
7}

Figure 1.3 A nonterminating recursive function

Chapter 1 Programming: A General Overview

Throughout this book, we will use recursion to solve problems. As an example of a
nonmathematical use, consider a large dictionary. Words in dictionaries are defined in
terms of other words. When we look up a word, we might not always understand the
definition, so we might have to look up words in the definition. Likewise, we might not
understand some of those, so we might have to continue this search for a while. Because the
dictionary is finite, eventually either (1) we will come to a point where we understand all
of the words in some definition (and thus understand that definition and retrace our path
through the other definitions) or (2) we will find that the definitions are circular and we
are stuck, or that some word we need to understand for a definition is not in the dictionary.

Our recursive strategy to understand words is as follows: If we know the meaning of a
word, then we are done; otherwise, we look the word up in the dictionary. If we understand
all the words in the definition, we are done; otherwise, we figure out what the definition
means by recursively looking up the words we don’t know. This procedure will terminate
if the dictionary is well defined but can loop indefinitely if a word is either not defined or
circularly defined.

Printing Out Numbers

Suppose we have a positive integer, n, that we wish to print out. Our routine will have the
heading printOut(n). Assume that the only I/O routines available will take a single-digit
number and output it. We will call this routine printDigit; for example, printDigit(4) will
output a 4.

Recursion provides a very clean solution to this problem. To print out 76234, we need
to first print out 7623 and then print out 4. The second step is easily accomplished with
the statement printDigit(n%10), but the first doesn’t seem any simpler than the original
problem. Indeed it is virtually the same problem, so we can solve it recursively with the
statement printOut(n/10).

This tells us how to solve the general problem, but we still need to make sure that
the program doesn't loop indefinitely. Since we haven't defined a base case yet, it is clear
that we still have something to do. Our base case will be printDigit(n) if 0 < n < 10.
Now printOut(n) is defined for every positive number from 0 to 9, and larger numbers are
defined in terms of a smaller positive number. Thus, there is no cycle. The entire function
is shown in Figure 1.4.

We have made no effort to do this efficiently. We could have avoided using the mod
routine (which can be very expensive) because n%10 = n — [n/10] * 10 is true for
positive n.?

1 void printOut(int n) // Print nonnegative n
2 A

3 if(n>=10)

4 printOut(n / 10);

5 printDigit(n % 10);

6 }

Figure 1.4 Recursive routine to print an integer

2 |x] is the largest integer that is less than or equal to x.

1.3 A Brief Introduction to Recursion

Recursion and Induction

Let us prove (somewhat) rigorously that the recursive number-printing program works. To
do so, we'll use a proof by induction.

Theorem 1.4
The recursive number-printing algorithm is correct for n > 0.

Proof (By induction on the number of digits in n)

First, if n has one digit, then the program is trivially correct, since it merely makes
a call to printDigit. Assume then that printOut works for all numbers of k or fewer
digits. A number of k 4 1 digits is expressed by its first k digits followed by its least
significant digit. But the number formed by the first k digits is exactly [n/10], which,
by the inductive hypothesis, is correctly printed, and the last digit is n mod 10, so the
program prints out any (k+ 1)-digit number correctly. Thus, by induction, all numbers
are correctly printed.

This proof probably seems a little strange in that it is virtually identical to the algorithm
description. It illustrates that in designing a recursive program, all smaller instances of the
same problem (which are on the path to a base case) may be assumed to work correctly. The
recursive program needs only to combine solutions to smaller problems, which are “mag-
ically” obtained by recursion, into a solution for the current problem. The mathematical
justification for this is proof by induction. This gives the third rule of recursion:

3. Design rule. Assume that all the recursive calls work.

This rule is important because it means that when designing recursive programs, you
generally don't need to know the details of the bookkeeping arrangements, and you don’t
have to try to trace through the myriad of recursive calls. Frequently, it is extremely difficult
to track down the actual sequence of recursive calls. Of course, in many cases this is an
indication of a good use of recursion, since the computer is being allowed to work out the
complicated details.

The main problem with recursion is the hidden bookkeeping costs. Although these
costs are almost always justifiable, because recursive programs not only simplify the algo-
rithm design but also tend to give cleaner code, recursion should not be used as a substitute
for a simple for loop. We'll discuss the overhead involved in recursion in more detail in
Section 3.6.

When writing recursive routines, it is crucial to keep in mind the four basic rules of
recursion:

1. Base cases. You must always have some base cases, which can be solved without
recursion.

2. Making progress. For the cases that are to be solved recursively, the recursive call must
always be to a case that makes progress toward a base case.

3. Design rule. Assume that all the recursive calls work.

4. Compound interest rule. Never duplicate work by solving the same instance of a problem
in separate recursive calls.

12

Chapter 1 Programming: A General Overview

The fourth rule, which will be justified (along with its nickname) in later sections, is the
reason that it is generally a bad idea to use recursion to evaluate simple mathematical func-
tions, such as the Fibonacci numbers. As long as you keep these rules in mind, recursive
programming should be straightforward.

1.4 C++ Classes

In this text, we will write many data structures. All of the data structures will be objects
that store data (usually a collection of identically typed items) and will provide functions
that manipulate the collection. In C++ (and other languages), this is accomplished by using
a class. This section describes the C++ class.

1.4.1 Basic class Syntax

A class in C++ consists of its members. These members can be either data or functions.
The functions are called member functions. Each instance of a class is an object. Each
object contains the data components specified in the class (unless the data components are
static, a detail that can be safely ignored for now). A member function is used to act on
an object. Often member functions are called methods.

As an example, Figure 1.5 is the IntCell class. In the IntCell class, each instance
of the IntCell—an IntCell object—contains a single data member named storedValue.
Everything else in this particular class is a method. In our example, there are four methods.
Two of these methods are read and write. The other two are special methods known as
constructors. Let us describe some key features.

First, notice the two labels public and private. These labels determine visibility of
class members. In this example, everything except the storedValue data member is public.
storedValue is private. A member that is public may be accessed by any method in any
class. A member that is private may only be accessed by methods in its class. Typically,
data members are declared private, thus restricting access to internal details of the class,
while methods intended for general use are made public. This is known as information
hiding. By using private data members, we can change the internal representation of the
object without having an effect on other parts of the program that use the object. This
is because the object is accessed through the public member functions, whose viewable
behavior remains unchanged. The users of the class do not need to know internal details
of how the class is implemented. In many cases, having this access leads to trouble. For
instance, in a class that stores dates using month, day, and year, by making the month, day,
and year private, we prohibit an outsider from setting these data members to illegal dates,
such as Feb 29, 2013. However, some methods may be for internal use and can be private.
In a class, all members are private by default, so the initial public is not optional.

Second, we see two constructors. A constructor is a method that describes how an
instance of the class is constructed. If no constructor is explicitly defined, one that initial-
izes the data members using language defaults is automatically generated. The IntCell class
defines two constructors. The first is called if no parameter is specified. The second is called
if an int parameter is provided, and uses that int to initialize the storedValue member.

1.4 C++ Classes

1 /**

2 * A class for simulating an integer memory cell.
3 */

4 class IntCell

5 A

6 pubTlic:

7 /**

8 * Construct the IntCell.

9 * Initial value is 0.

10 */

11 IntCell()

12 { storedValue = 0; }

13

14 /**

15 * Construct the IntCell.

16 * Initial value is initialValue.
17 */

18 IntCell(int initialValue)

19 { storedValue = initialValue; }
20
21 /**
22 * Return the stored value.
23 */
24 int read()
25 { return storedValue; }
26
27 /**
28 * Change the stored value to x.
29 */
30 void write(int x)
31 { storedValue = x; }
32
33 private:
34 int storedValue;
35 1

Figure 1.5 A complete declaration of an IntCell class

1.4.2 Extra Constructor Syntax and Accessors

Although the class works as written, there is some extra syntax that makes for better code.
Four changes are shown in Figure 1.6 (we omit comments for brevity). The differences are
as follows:

Default Parameters

The IntCell constructor illustrates the default parameter. As a result, there are still two
IntCell constructors defined. One accepts an initialValue. The other is the zero-parameter

13

14

Chapter 1 Programming: A General Overview

constructor, which is implied because the one-parameter constructor says that
initialValue is optional. The default value of O signifies that O is used if no para-
meter is provided. Default parameters can be used in any function, but they are most
commonly used in constructors.

Initialization List

The IntCell constructor uses an initialization list (Figure 1.6, line 8) prior to the body
of the constructor. The initialization list is used to initialize the data members directly. In
Figure 1.6, there’s hardly a difference, but using initialization lists instead of an assignment
statement in the body saves time in the case where the data members are class types that
have complex initializations. In some cases it is required. For instance, if a data member
is const (meaning that it is not changeable after the object has been constructed), then
the data member’s value can only be initialized in the initialization list. Also, if a data
member is itself a class type that does not have a zero-parameter constructor, then it must
be initialized in the initialization list.

Line 8 in Figure 1.6 uses the syntax

: storedValue{ initialValue } { }
instead of the traditional
: storedValue(initialValue) { }

The use of braces instead of parentheses is new in C++11 and is part of a larger effort
to provide a uniform syntax for initialization everywhere. Generally speaking, anywhere
you can initialize, you can do so by enclosing initializations in braces (though there is one
important exception, in Section 1.4.4, relating to vectors).

1 /**

2 * A class for simulating an integer memory cell.
3 */

4 class IntCell

5

6 pubTic:

7 explicit IntCell(int initialvalue = 0)
8 : storedValue{ initialValue } { }

9 int read() const
10 { return storedValue; }
11 void write(int x)
12 { storedValue = x; }
13
14 private:
15 int storedValue;
16 };

Figure 1.6 IntCell class with revisions

1.4 C++ Classes

explicit Constructor

The IntCell constructor is explicit. You should make all one-parameter constructors
explicit to avoid behind-the-scenes type conversions. Otherwise, there are somewhat
lenient rules that will allow type conversions without explicit casting operations. Usually,
this is unwanted behavior that destroys strong typing and can lead to hard-to-find bugs.
As an example, consider the following:

IntCell obj; // obj is an IntCell
obj = 37; // Should not compile: type mismatch

The code fragment above constructs an IntCell object obj and then performs an assign-
ment statement. But the assignment statement should not work, because the right-hand
side of the assignment operator is not another IntCell. obj’s write method should have
been used instead. However, C++ has lenient rules. Normally, a one-parameter constructor
defines an implicit type conversion, in which a temporary object is created that makes
an assignment (or parameter to a function) compatible. In this case, the compiler would
attempt to convert

obj = 37; // Should not compile: type mismatch
into

IntCell temporary = 37;
obj = temporary;

Notice that the construction of the temporary can be performed by using the one-
parameter constructor. The use of explicit means that a one-parameter constructor cannot
be used to generate an implicit temporary. Thus, since IntCell’s constructor is declared
explicit, the compiler will correctly complain that there is a type mismatch.

Constant Member Function

A member function that examines but does not change the state of its object is an accessor.
A member function that changes the state is a mutator (because it mutates the state of the
object). In the typical collection class, for instance, isEmpty is an accessor, while makeEmpty
is a mutator.

In C++, we can mark each member function as being an accessor or a mutator. Doing
so is an important part of the design process and should not be viewed as simply a com-
ment. Indeed, there are important semantic consequences. For instance, mutators cannot
be applied to constant objects. By default, all member functions are mutators. To make a
member function an accessor, we must add the keyword const after the closing parenthesis
that ends the parameter type list. The const-ness is part of the signature. const can be used
with many different meanings. The function declaration can have const in three different
contexts. Only the const after a closing parenthesis signifies an accessor. Other uses are
described in Sections 1.5.3 and 1.5.4.

In the IntCell class, read is clearly an accessor: it does not change the state of the
IntCell. Thus it is made a constant member function at line 9. If a member function

15

16

Chapter 1 Programming: A General Overview

is marked as an accessor but has an implementation that changes the value of any data
member, a compiler error is generated.?

1.4.3 Separation of Interface and Implementation

The class in Figure 1.6 contains all the correct syntactic constructs. However, in C++ it is
more common to separate the class interface from its implementation. The interface lists the
class and its members (data and functions). The implementation provides implementations
of the functions.

Figure 1.7 shows the class interface for IntCel1, Figure 1.8 shows the implementation,
and Figure 1.9 shows a main routine that uses the IntCell. Some important points follow.

Preprocessor Commands

The interface is typically placed in a file that ends with .h. Source code that requires
knowledge of the interface must #include the interface file. In our case, this is both the
implementation file and the file that contains main. Occasionally, a complicated project will
have files including other files, and there is the danger that an interface might be read twice
in the course of compiling a file. This can be illegal. To guard against this, each header file
uses the preprocessor to define a symbol when the class interface is read. This is shown
on the first two lines in Figure 1.7. The symbol name, IntCell_H, should not appear in
any other file; usually, we construct it from the filename. The first line of the interface file

1 #ifndef IntCell_H

2 #define IntCell _H

3

4 /**

5 * A class for simulating an integer memory cell.
6 */

7 class IntCell

8 A

9 public:
10 explicit IntCell(int initialvValue = 0);
11 int read() const;
12 void write(int x);
13
14 private:

15 int storedValue;
16 };
17
18 #endif

Figure 1.7 IntCell class interface in file IntCell.h

3 Data members can be marked mutable to indicate that const-ness should not apply to them.

1.4 C++ Classes 17

1 #include "IntCell.h"
2
3 /**
4 * Construct the IntCell with initialValue
5 */
6 IntCell::IntCell(int initialValue) : storedValue{ initialValue }
7
8 '}
9
lo /**
11 * Return the stored value.
12 */
13 int IntCell::read() const
14 |
15 return storedValue;
16}
17
18 /**
19 * Store x.
20 */
21 void IntCell::write(int x)
22
23 storedValue = x;
24}

Figure 1.8 IntCell class implementation in file IntCell.cpp

1 #include <iostream>
2 #include "IntCell.h"
3 using namespace std;
4_

5 int main()

6

7 IntCell m;

8

9 m.write(5);
10 cout << "Cell contents: " << m.read() << endl;
11
12 return 0;
13}

Figure 1.9 Program that uses IntCel1 in file TestIntCell.cpp

Chapter 1 Programming: A General Overview

tests whether the symbol is undefined. If so, we can process the file. Otherwise, we do not
process the file (by skipping to the #endif), because we know that we have already read
the file.

Scope Resolution Operator

In the implementation file, which typically ends in .cpp, .cc, or .C, each member function
must identify the class that it is part of. Otherwise, it would be assumed that the function
is in global scope (and zillions of errors would result). The syntax is ClassName: :member.
The :: is called the scope resolution operator.

Signatures Must Match Exactly

The signature of an implemented member function must match exactly the signature listed
in the class interface. Recall that whether a member function is an accessor (via the const
at the end) or a mutator is part of the signature. Thus an error would result if, for example,
the const was omitted from exactly one of the read signatures in Figures 1.7 and 1.8.
Note that default parameters are specified in the interface only. They are omitted in the
implementation.

Objects Are Declared Like Primitive Types

In classic C++, an object is declared just like a primitive type. Thus the following are legal
declarations of an IntCell object:

IntCell objl; // Zero parameter constructor
IntCell obj2(12); // One parameter constructor

On the other hand, the following are incorrect:

IntCell obj3 = 37; // Constructor is explicit
IntCell obj4(); // Function declaration

The declaration of obj3 is illegal because the one-parameter constructor is explicit. It
would be legal otherwise. (In other words, in classic C++ a declaration that uses the one-
parameter constructor must use the parentheses to signify the initial value.) The declaration
for obj4 states that it is a function (defined elsewhere) that takes no parameters and returns
an IntCell.

The confusion of obj4 is one reason for the uniform initialization syntax using braces.
It was ugly that initializing with zero parameter in a constructor initialization list (Fig. 1.6,
line 8) would require parentheses with no parameter, but the same syntax would be illegal
elsewhere (for obj4). In C++11, we can instead write:

IntCell objl; // Zero parameter constructor, same as before
IntCell obj2{ 12 }; // One parameter constructor, same as before
IntCell obj4{ }; // Zero parameter constructor

The declaration of obj4 is nicer because initialization with a zero-parameter constructor is
no longer a special syntax case; the initialization style is uniform.

1.4 C++ Classes

1 #include <iostream>

2 #include <vector>

3 using namespace std;

4

5 int main()

6

7 vector<int> squares(100);

8

9 for(int i = 0; i < squares.size(); ++i)
10 squares[1] =1 * i;
11
12 for(int i = 0; i < squares.size(); ++i)
13 cout << i << " " << squares[i] << endl;
14
15 return 0;
16}

Figure 1.10 Using the vector class: stores 100 squares and outputs them

1.4.4 vector and string

The C++ standard defines two classes: the vector and string. vector is intended to replace
the built-in C++ array, which causes no end of trouble. The problem with the built-in C++
array is that it does not behave like a first-class object. For instance, built-in arrays cannot
be copied with =, a built-in array does not remember how many items it can store, and its
indexing operator does not check that the index is valid. The built-in string is simply an
array of characters, and thus has the liabilities of arrays plus a few more. For instance, ==
does not correctly compare two built-in strings.

The vector and string classes in the STL treat arrays and strings as first-class objects.
A vector knows how large it is. Two string objects can be compared with ==, <, and so
on. Both vector and string can be copied with =. If possible, you should avoid using the
built-in C++ array and string. We discuss the built-in array in Chapter 3 in the context of
showing how vector can be implemented.

vector and string are easy to use. The code in Figure 1.10 creates a vector that stores
one hundred perfect squares and outputs them. Notice also that size is a method that
returns the size of the vector. A nice feature of the vector that we explore in Chapter 3 is
that it is easy to change its size. In many cases, the initial size is 0 and the vector grows as
needed.

C++ has long allowed initialization of built-in C++ arrays:

int daysInMonth[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
It was annoying that this syntax was not legal for vectors. In older C++, vectors were

either initialized with size O or possibly by specifying a size. So, for instance, we would
write:

19

20

Chapter 1 Programming: A General Overview

vector<int> daysInMonth(12); // No {} before C++11

daysInMonth[0] = 31; daysInMonth[1] = 28; daysInMonth[2] = 31;
daysInMonth[3] = 30; daysInMonth[4] = 31; daysInMonth[5] = 30;
daysInMonth[6] = 31; daysInMonth[7] = 31; daysInMonth[8] = 30;
daysInMonth[9] = 31; daysInMonth[10] = 30; daysInMonth[11] = 31;

Certainly this leaves something to be desired. C++11 fixes this problem and allows:
vector<int> daysInMonth = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

Requiring the = in the initialization violates the spirit of uniform initialization, since now
we would have to remember when it would be appropriate to use =. Consequently, C++11

also allows (and some prefer):
vector<int> daysInMonth { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
With syntax, however, comes ambiguity, as one sees with the declaration

vector<int> daysInMonth { 12 };

Is this a vector of size 12, or is it a vector of size 1 with a single element 12 in position
0? C++11 gives precedence to the initializer list, so in fact this is a vector of size 1 with a
single element 12 in position 0, and if the intention is to initialize a vector of size 12, the
old C++ syntax using parentheses must be used:

vector<int> daysInMonth(12); // Must use () to call constructor that takes size

string is also easy to use and has all the relational and equality operators to compare
the states of two strings. Thus strl==str2 is true if the value of the strings are the same. It
also has a Tength method that returns the string length.

As Figure 1.10 shows, the basic operation on arrays is indexing with []. Thus, the sum
of the squares can be computed as:

int sum = 0;
for(int i = 0; i < squares.size(); ++i)
sum += squares[i];

The pattern of accessing every element sequentially in a collection such as an array or a
vector is fundamental, and using array indexing for this purpose does not clearly express
the idiom. C++11 adds a range for syntax for this purpose. The above fragment can be
written instead as:

int sum = 0;
for(int x : squares)
sum += X;

In many cases, the declaration of the type in the range for statement is unneeded; if squares
is a vector<int>, it is obvious that x is intended to be an int. Thus C++11 also allows the
use of the reserved word auto to signify that the compiler will automatically infer the

appropriate type:
int sum = 0;

for(auto x : squares)
sum += X;

1.5 C++ Details

The range for loop is appropriate only if every item is being accessed sequentially and only
if the index is not needed. Thus, in Figure 1.10 the two loops cannot be rewritten as range
for loops, because the index i is also being used for other purposes. The range for loop
as shown so far allows only the viewing of items; changing the items can be done using
syntax described in Section 1.5.4.

1.5 C++ Details

Like any language, C++ has its share of details and language features. Some of these are
discussed in this section.

1.5.1 Pointers

A pointer variable is a variable that stores the address where another object resides. It is
the fundamental mechanism used in many data structures. For instance, to store a list of
items, we could use a contiguous array, but insertion into the middle of the contiguous
array requires relocation of many items. Rather than store the collection in an array, it
is common to store each item in a separate, noncontiguous piece of memory, which is
allocated as the program runs. Along with each object is a link to the next object. This
link is a pointer variable, because it stores a memory location of another object. This is the
classic linked list that is discussed in more detail in Chapter 3.

To illustrate the operations that apply to pointers, we rewrite Figure 1.9 to dynamically
allocate the IntCell. It must be emphasized that for a simple IntCell class, there is no
good reason to write the C++ code this way. We do it only to illustrate dynamic memory
allocation in a simple context. Later in the text, we will see more complicated classes,
where this technique is useful and necessary. The new version is shown in Figure 1.11.

Declaration

Line 3 illustrates the declaration of m. The * indicates that mis a pointer variable; it is allowed
to point at an IntCell object. The value of m is the address of the object that it points at.

int main()

{
IntCell *m;

1

2

3

4

5 m = new IntCell{ 0 };
6 m->write(5);

7 cout << "Cell contents: " << m->read() << endl;
8

9 delete m;

10 return 0;

11}

Figure 1.11 Program that uses pointers to IntCell (there is no compelling reason to do
this)

21

22

Chapter 1 Programming: A General Overview

m is uninitialized at this point. In C++, no such check is performed to verify that m is
assigned a value prior to being used (however, several vendors make products that do
additional checks, including this one). The use of uninitialized pointers typically crashes
programs, because they result in access of memory locations that do not exist. In general,
it is a good idea to provide an initial value, either by combining lines 3 and 5, or by
initializing m to the nul1ptr pointer.

Dynamic Object Creation

Line 5 illustrates how objects can be created dynamically. In C++ new returns a pointer
to the newly created object. In C++ there are several ways to create an object using its
zero-parameter constructor. The following would be legal:

m = new IntCell(); // OK
m = new IntCell{ }; // C++11
m = new IntCell; // Preferred in this text

We generally use the last form because of the problem illustrated by obj4 in Section 1.4.3.

Garbage Collection and delete

In some languages, when an object is no longer referenced, it is subject to automatic
garbage collection; the programmer does not have to worry about it. C++ does not have
garbage collection. When an object that is allocated by new is no longer referenced, the
delete operation must be applied to the object (through a pointer). Otherwise, the mem-
ory that it consumes is lost (until the program terminates). This is known as a memory
leak. Memory leaks are, unfortunately, common occurrences in many C++ programs.
Fortunately, many sources of memory leaks can be automatically removed with care. One
important rule is to not use new when an automatic variable can be used instead. In the
original program, the IntCel1 is not allocated by new but instead is allocated as a local vari-
able. In that case, the memory for the IntCell is automatically reclaimed when the function
in which it is declared returns. The delete operator is illustrated at line 9 of Figure 1.11.

Assignment and Comparison of Pointers

Assignment and comparison of pointer variables in C++ is based on the value of the pointer,
meaning the memory address that it stores. Thus two pointer variables are equal if they
point at the same object. If they point at different objects, the pointer variables are not
equal, even if the objects being pointed at are themselves equal. If Ths and rhs are pointer
variables (of compatible types), then Ths=rhs makes Ths point at the same object that rhs
points at.t

Accessing Members of an Object through a Pointer

If a pointer variable points at a class type, then a (visible) member of the object being
pointed at can be accessed via the -> operator. This is illustrated at lines 6 and 7 of
Figure 1.11.

* Throughout this text, we use Ths and rhs to signify left-hand side and right-hand side of a binary operator.

1.5 C++ Details

Address-of Operator (&)

One important operator is the address-of operator & This operator returns the mem-
ory location where an object resides and is useful for implementing an alias test that is
discussed in Section 1.5.6.

1.5.2 Lvalues, Rvalues, and References

In addition to pointer types, C++ defines reference types. One of the major changes in
C++11 is the creation of a new reference type, known as an rvalue reference. In order to
discuss rvalue references, and the more standard lvalue reference, we need to discuss the
concept of Ivalues and rvalues. Note that the precise rules are complex, and we provide
a general description rather than focusing on the corner cases that are important in a
language specification and for compiler writers.

An lvalue is an expression that identifies a non-temporary object. An rvalue is an
expression that identifies a temporary object or is a value (such as a literal constant) not
associated with any object.

As examples, consider the following;

vector<string> arr(3);
const int x = 2;
int y;

int z =x+y;
string str = "foo";
vector<string> *ptr = &arr;

With these declarations, arr, str, arr[x], &x, y, z, ptr, *ptr, (*ptr)[x] are all Ivalues.
Additionally, x is also an lvalue, although it is not a modifiable lvalue. As a general rule, if
you have a name for a variable, it is an Ivalue, regardless of whether it is modifiable.

For the above declarations 2, "foo", x+y, str.substr(0,1) are all rvalues. 2 and "foo" are
rvalues because they are literals. Intuitively, x+y is an rvalue because its value is temporary;
it is certainly not x or y, but it is stored somewhere prior to being assigned to z. Similar
logic applies for str.substr(0,1).

Notice the consequence that there are some cases in which the result of a function call
or operator call can be an lvalue (since *ptr and arr[x] generate lvalues) as does cin>>x>>y
and others where it can be an rvalue; hence, the language syntax allows a function call
or operator overload to specify this in the return type, and this aspect is discussed in
Section 1.5.4. Intuitively, if the function call computes an expression whose value does
not exist prior to the call and does not exist once the call is finished unless it is copied
somewhere, it is likely to be an rvalue.

A reference type allows us to define a new name for an existing value. In classic C++, a
reference can generally only be a name for an lvalue, since having a reference to a temporary
would lead to the ability to access an object that has theoretically been declared as no longer
needed, and thus may have had its resources reclaimed for another object. However, in
C++11, we can have two types of references: lvalue references and rvalue references.

23

Chapter 1 Programming: A General Overview

In C++11, an lvalue reference is declared by placing an & after some type. An lvalue
reference then becomes a synonym (i.e., another name) for the object it references. For
instance,

string str = "hell";

string & rstr = str; // rstr is another name for str

rstr += 'o'; // changes str to "hello"

bool cond = (&str == &rstr); // true; str and rstr are same object

string & badl = "hello"; // illegal: "hello" is not a modifiable Tvalue
string & bad2 = str + ""; // illegal: str+"" is not an lvalue

string & sub = str.substr(0, 4); // illegal: str.substr(0, 4) is not an lvalue

In C++11, an rvalue reference is declared by placing an &% after some type. An rvalue
reference has the same characteristics as an Ivalue reference except that, unlike an Ivalue
reference, an rvalue reference can also reference an rvalue (i.e., a temporary). For instance,

string str = "hell";

string & badl = "hello"; // Legal
string && bad2 = str + ""; // Legal
string && sub = str.substr(0, 4); // Legal

Whereas lvalue references have several clear uses in C++, the utility of rvalue references is
not obvious. Several uses of lvalue references will be discussed now; rvalue references are
deferred until Section 1.5.3.

Ivalue references use #1: aliasing complicated names

The simplest use, which we will see in Chapter 5, is to use a local reference variable solely
for the purpose of renaming an object that is known by a complicated expression. The
code we will see is similar to the following:

auto & whichList = theLists[myhash(x, theLists.size()) 1;

if(find(begin(whichList), end(whichList), x) != end(whichList))
return false;

whichList.push_back(x);

A reference variable is used so that the considerably more complex expression
theLists[myhash(x,theLists.size())] does not have to be written (and then evaluated) four
times. Simply writing

auto whichList = thelLists[myhash(x, theLists.size())]1;
would not work; it would create a copy, and then the push_back operation on the last line

would be applied to the copy, not the original.

Ivalue references use #2: range for loops

A second use is in the range for statement. Suppose we would like to increment by 1 all
values in a vector. This is easy with a for loop:

for(int i = 0; i < arr.size(); ++i)
++arr[1];

1.5 C++ Details

But of course, a range for loop would be more elegant. Unfortunately, the natural code
does not work, because x assumes a copy of each value in the vector.

for(auto x : arr) // broken
++X3

What we really want is for x to be another name for each value in the vector, which is easy
to do if x is a reference:

for(auto & x : arr) // works
++X3

Ivalue references use #3: avoiding a copy

Suppose we have a function findMax that returns the largest value in a vector or other large
collection. Then given a vector arr, if we invoke findMax, we would naturally write

auto x = findMax(arr);

However, notice that if the vector stores large objects, then the result is that x will be a
copy of the largest value in arr. If we need a copy for some reason, that is fine; how-
ever, in many instances, we only need the value and will not make any changes to x. In
such a case, it would be more efficient to declare that x is another name for the largest
value in arr, and hence we would declare x to be a reference (auto will deduce const-
ness; if auto is not used, then typically a non-modifiable reference is explicitly stated with
const):

auto & x = findMax(arr);

Normally, this means that findMax would also specify a return type that indicates a reference
variable (Section 1.5.4).
This code illustrates two important concepts:

1. Reference variables are often used to avoid copying objects across function-call
boundaries (either in the function call or the function return).

2. Syntax is needed in function declarations and returns to enable the passing and
returning using references instead of copies.

1.5.3 Parameter Passing

Many languages, C and Java included, pass all parameters using call-by-value: the actual
argument is copied into the formal parameter. However, parameters in C++ could be large
complex objects for which copying is inefficient. Additionally, sometimes it is desirable
to be able to alter the value being passed in. As a result of this, C++ has historically had
three different ways to pass parameters, and C++11 has added a fourth. We will begin by
describing the three parameter-passing mechanisms in classic C++ and then explain the
new parameter-passing mechanism that has been recently added.

25

26

Chapter 1 Programming: A General Overview

To see the reasons why call-by-value is not sufficient as the only parameter-passing
mechanism in C++, consider the three function declarations below:

double average(double a, double b); // returns average of a and b
void swap(double a, double b); // swaps a and b; wrong parameter types
string randomItem(vector<string> arr); // returns a random item in arr; inefficient

average illustrates an ideal use of call-by-value. If we make a call
double z = average(x, y)3

then call-by-value copies x into a, y into b, and then executes the code for the average
function definition that is fully specified elsewhere. Presuming that x and y are local
variables inaccessible to average, it is guaranteed that when average returns, x and y are
unchanged, which is a very desirable property. However, this desirable property is exactly
why call-by-value cannot work for swap. If we make a call

swap(X, ¥y)3

then call-by-value guarantees that regardless of how swap is implemented, x and y will
remain unchanged. What we need instead is to declare that a and b are references:

void swap(double & a, double & b); // swaps a and b; correct parameter types

With this signature, a is a synonym for x, and b is a synonym for y. Changes to a and b in
the implementation of swap are thus changes to x and y. This form of parameter passing
has always been known as call-by-reference in C++. In C++11, this is more technically
call-by-lvalue-reference, but we will use call-by-reference throughout this text to refer to
this style of parameter passing.

The second problem with call-by-value is illustrated in randomItem. This function
intends to return a random item from the vector arr; in principle, this is a quick operation
consisting of the generation of a “random” number between 0 and arr.size()-1, inclusive,
in order to determine an array index and the returning of the item at this randomly chosen
array index. But using call-by-value as the parameter-passing mechanism forces the copy
of the vector vec in the call randomItem(vec). This is a tremendously expensive operation
compared to the cost of computing and returning a randomly chosen array index and is
completely unnecessary. Normally, the only reason to make a copy is to make changes to
the copy while preserving the original. But randomItem doesn't intend to make any changes
at all; it is just viewing arr. Thus, we can avoid the copy but achieve the same semantics by
declaring that arr is a constant reference to vec; as a result, arr is a synonym for vec, with
no copy, but since it is a const, it cannot be modified. This essentially provides the same
viewable behavior as call-by-value. The signature would be

string randomItem(const vector<string> & arr); // returns a random item in arr

This form of parameter passing is known as call-by-reference-to-a-constant in C++, but
as that is overly verbose and the const precedes the &, it is also known by the simpler
terminology of call-by-constant reference.

The parameter-passing mechanism for C++ prior to C++11 can thus generally be
decided by a two-part test:

1.5 C++ Details

1. If the formal parameter should be able to change the value of the actual argument, then
you must use call-by-reference.

2. Otherwise, the value of the actual argument cannot be changed by the formal parame-
ter. If the type is a primitive type, use call-by-value. Otherwise, the type is a class type
and is generally passed using call-by-constant-reference, unless it is an unusually small
and easily copyable type (e.g., a type that stores two or fewer primitive types).

Put another way,

1. Call-by-value is appropriate for small objects that should not be altered by the
function.

2. Call-by-constant-reference is appropriate for large objects that should not be altered
by the function and are expensive to copy.

3. Call-by-reference is appropriate for all objects that may be altered by the function.

Because C++11 adds rvalue reference, there is a fourth way to pass parameters: call-by-
rvalue-reference. The central concept is that since an rvalue stores a temporary that is
about to be destroyed, an expression such as x=rval (where rval is an rvalue) can be
implemented by a move instead of a copy; often moving an object’s state is much easier
than copying it, as it may involve just a simple pointer change. What we see here is that
x=y can be a copy if y is an Ivalue, but a move if y is an rvalue. This gives a primary use case
of overloading a function based on whether a parameter is an lvalue or rvalue, such as:

string randomItem(const vector<string> & arr); // returns random item in lvalue arr
string randomItem(vector<string> && arr); // returns random item in rvalue arr

vector<string> v { "hello", "world" };
cout << randomItem(v) << endl; // invokes lvalue method
cout << randomItem({ "hello", "world" }) << endl; // invokes rvalue method

It is easy to test that with both functions written, the second overload is called on rvalues,
while the first overload is called on lvalues, as shown above. The most common use of this
idiom is in defining the behavior of = and in writing constructors, and this discussion is
deferred until Section 1.5.6.

1.5.4 Return Passing

In C++, there are several different mechanisms for returning from a function. The most
straightforward mechanism to use is return-by-value, as shown in these signatures:

double average(double a, double b); // returns average of a and b
LargeType randomItem(const vector<LargeType> & arr); // potentially inefficient
vector<int> partialSum(const vector<int> & arr); // efficient in C++11

These signatures all convey the basic idea that the function returns an object of an
appropriate type that can be used by the caller; in all cases the result of the function call is
an rvalue. However, the call to randomItem has potential inefficiencies. The call to partialSum
similarly has potential inefficiencies, though in C++11 the call is likely to be very efficient.

27

28

Chapter 1 Programming: A General Overview

1 LargeType randomIteml(const vector<LargeType> & arr)

2 {

3 return arr[randomInt(0, arr.size() - 1)];

4 }

5

6 const LargeType & randomItem2(const vector<LargeType> & arr)
7 {

8 return arr[randomInt(0, arr.size() - 1) 1;

9 }
10
11 vector<LargeType> vec;
12
13 LargeType iteml = randomIteml(vec); // copy
14 LargeType item2 = randomItem2(vec); // copy
15 const LargeType & item3 = randomItem2(vec); // no copy

Figure 1.12 Two versions to obtain a random item in an array; second version avoids
creation of a temporary LargeType object, but only if caller accesses it with a constant
reference

First, consider two implementations of randomItem. The first implementation, shown
in lines 1-4 of Figure 1.12 uses return-by-value. As a result, the LargeType at the random
array index will be copied as part of the return sequence. This copy is done because, in
general, return expressions could be rvalues (e.g., return x+4) and hence will not logically
exist by the time the function call returns at line 13. But in this case, the return type is
an lvalue that will exist long after the function call returns, since arr is the same as vec.
The second implementation shown at lines 6-9 takes advantage of this and uses return-
by-constant-reference to avoid an immediate copy. However, the caller must also use a
constant reference to access the return value, as shown at line 15; otherwise, there will
still be a copy. The constant reference signifies that we do not want to allow changes to be
made by the caller by using the return value; in this case it is needed since arr itself is a
non-modifiable vector. An alternative is to use auto & at line 15 to declare item3.

Figure 1.13 illustrates a similar situation in which call-by-value was inefficient in clas-
sic C++ due to the creation and eventual cleanup of a copy. Historically, C++ programmers
have gone to great extent to rewrite their code in an unnatural way, using techniques
involving pointers or additional parameters that decrease readability and maintainability,
eventually leading to programming errors. In C++11, objects can define move semantics
that can be employed when return-by-value is seen; in effect, the result vector will be
moved to sums, and the vector implementation is optimized to allow this to be done with
little more than a pointer change. This means that partialSum as shown in Figure 1.13 can
be expected to avoid unnecessary copying and not need any changes. The details on how
move semantics are implemented are discussed in Section 1.5.6; a vector implementation
is discussed in Section 3.4. Notice that the move semantics can be called on result at line
9 in Figure 1.13 but not on the returned expression at line 3 in Figure 1.12. This is a con-
sequence of the distinction between a temporary and a non-temporary, and the distinction
between an lvalue reference and an rvalue reference.

1.5 C++ Details

1 vector<int> partialSum(const vector<int> & arr)
2 {

3 vector<int> result(arr.size());

4

5 result[0] = arr[0];

6 for(int i = 1; i < arr.size(); ++i)

7 result[i] = result[i - 1] +arr[i];
8

9 return result;

10 }

11

12 vector<int> vec;

13

14 vector<int> sums = partialSum(vec); // Copy in old C++; move in C++11

Figure 1.13 Returning of a stack-allocated rvalue in C++11

In addition to the return-by-value and return-by-constant-reference idioms, functions
can use return-by-reference. This idiom is used in a few places to allow the caller of a
function to have modifiable access to the internal data representation of a class. Return-by-
reference in this context is discussed in Section 1.7.2 when we implement a simple matrix
class.

1.5.5 std::swap and std::move

Throughout this section, we have discussed instances in which C++11 allows the pro-
grammer to easily replace expensive copies with moves. Yet another example of this is
the implementation of a swap routine. Swapping doubles is easily implemented with three
copies, as shown in Figure 1.14. However, although the same logic works to swap larger
types, it comes with a significant cost: Now the copies are very expensive! However, it is
easy to see that there is no need to copy; what we actually want is to do moves instead
of copies. In C++11, if the right-hand side of the assignment operator (or constructor) is
an rvalue, then if the object supports moving, we can automatically avoid copies. In other
words, if vector<string> supports efficient moving, and if at line 10 x were an rvalue, then
x could be moved into tmp; similarly, if y was an rvalue at line 11, then it could be moved
in to y. vector does indeed support moving; however, x, y, and tmp are all lvalues at lines
10, 11, 12 (remember, if an object has a name, it is an lvalue). Figure 1.15 shows how
this problem is solved; an implementation of swap at lines 1-6 shows that we can use a
cast to treat the right-hand side of lines 10-12 as rvalues. The syntax of a static cast is
daunting; fortunately, function std: :move exists that converts any lvalue (or rvalue) into an
rvalue. Note that the name is misleading; std: :move doesn't move anything; rather, it makes
a value subject to be moved. Use of std: :move is also shown in a revised implementation of
swap at lines 8-13 of Figure 1.15. The swap function std: :swap is also part of the Standard
Library and will work for any type.

29

30

Chapter 1 Programming: A General Overview

1 void swap(double & x, double & y)
2 {

3 double tmp = x;

4 X =Y;

5 y = tmp;

6 }

7

8 void swap(vector<string> & x, vector<string> & y)
9 {

10 vector<string> tmp = x;

11 X =Yy

12 y = tmp;

13 }

Figure 1.14 Swapping by three copies

1 void swap(vector<string> & x, vector<string> & y)
2 {

3 vector<string> tmp = static_cast<vector<string> &&>(x);
4 X = static_cast<vector<string> &&>(y);

5 y = static_cast<vector<string> &&>(tmp);

6 }

7

8 void swap(vector<string> & x, vector<string> & y)
9 {

10 vector<string> tmp = std::move(x);

11 x = std::move(y);

12 y = std::move(tmp);

13 }

Figure 1.15 Swapping by three moves; first with a type cast, second using std: :move

1.5.6 The Big-Five: Destructor, Copy Constructor, Move
Constructor, Copy Assignment operator=, Move
Assignment operator=

In C++11, classes come with five special functions that are already written for you. These
are the destructor, copy constructor, move constructor, copy assignment operator,
and move assignment operator. Collectively these are the big-five. In many cases, you
can accept the default behavior provided by the compiler for the big-five. Sometimes you
cannot.

Destructor

The destructor is called whenever an object goes out of scope or is subjected to a delete.
Typically, the only responsibility of the destructor is to free up any resources that were

1.5 C++ Details

acquired during the use of the object. This includes calling delete for any correspond-
ing news, closing any files that were opened, and so on. The default simply applies the
destructor on each data member.

Copy Constructor and Move Constructor

There are two special constructors that are required to construct a new object, initialized
to the same state as another object of the same type. These are the copy constructor if the
existing object is an Ivalue, and the move constructor if the existing object is an rvalue
(i.e., a temporary that is about to be destroyed anyway). For any object, such as an IntCell
object, a copy constructor or move constructor is called in the following instances:

e a declaration with initialization, such as

IntCell B = C; // Copy construct if C is Tvalue; Move construct if C is rvalue
IntCell B { C }; // Copy construct if C is Tvalue; Move construct if C is rvalue

but not

B =Cs // Assignment operator, discussed later

* an object passed using call-by-value (instead of by & or const &), which, as mentioned
earlier, should rarely be done anyway.

* an object returned by value (instead of by & or const &). Again, a copy constructor is
invoked if the object being returned is an Ivalue, and a move constructor is invoked if
the object being returned is an rvalue.

By default, the copy constructor is implemented by applying copy constructors to each
data member in turn. For data members that are primitive types (for instance, int, double,
or pointers), simple assignment is done. This would be the case for the storedValue data
member in our IntCell class. For data members that are themselves class objects, the copy
constructor or move constructor, as appropriate, for each data member’s class is applied to
that data member.

Copy Assignment and Move Assignment (operator=)

The assignment operator is called when = is applied to two objects that have both been
previously constructed. Ths=rhs is intended to copy the state of rhs into 1hs. If rhs is an
lvalue, this is done by using the copy assignment operator; if rhs is an rvalue (i.e., a tem-
porary that is about to be destroyed anyway), this is done by using the move assignment
operator. By default, the copy assignment operator is implemented by applying the copy
assignment operator to each data member in turn.

Defaults

If we examine the IntCell class, we see that the defaults are perfectly acceptable, so we
do not have to do anything. This is often the case. If a class consists of data members
that are exclusively primitive types and objects for which the defaults make sense, the
class defaults will usually make sense. Thus a class whose data members are int, double,
vector<int>, string, and even vector<string> can accept the defaults.

31

32

Chapter 1 Programming: A General Overview

The main problem occurs in a class that contains a data member that is a pointer. We
will describe the problem and solutions in detail in Chapter 3; for now, we can sketch
the problem. Suppose the class contains a single data member that is a pointer. This
pointer points at a dynamically allocated object. The default destructor does nothing to
data members that are pointers (for good reason—recall that we must delete ourselves).
Furthermore, the copy constructor and copy assignment operator both copy the value of
the pointer rather than the objects being pointed at. Thus, we will have two class instances
that contain pointers that point to the same object. This is a so-called shallow copy.
Typically, we would expect a deep copy, in which a clone of the entire object is made. Thus,
as a result, when a class contains pointers as data members, and deep semantics are impor-
tant, we typically must implement the destructor, copy assignment, and copy constructors
ourselves. Doing so removes the move defaults, so we also must implement move assign-
ment and the move constructor. As a general rule, either you accept the default for all five
operations, or you should declare all five, and explicitly define, default (use the keyword
default), or disallow each (use the keyword delete). Generally we will define all five.

For IntCell, the signatures of these operations are

~IntCell(); // Destructor

IntCell(const IntCell & rhs); // Copy constructor
IntCel1(IntCell && rhs); // Move constructor
IntCell & operator= (const IntCell & rhs); // Copy assignment
IntCell & operator= (IntCell & rhs); // Move assignment

The return type of operator= is a reference to the invoking object, so as to allow chained
assignments a=b=c. Though it would seem that the return type should be a const reference,
so as to disallow nonsense such as (a=b)=c, that expression is in fact allowed in C++ even
for integer types. Hence, the reference return type (rather than the const reference return
type) is customarily used but is not strictly required by the language specification.

If you write any of the big-five, it would be good practice to explicitly consider all
the others, as the defaults may be invalid or inappropriate. In a simple example in which
debugging code is placed in the destructor, no default move operations will be generated.
And although unspecified copy operations are generated, that guarantee is deprecated and
might not be in a future version of the language. Thus, it is best to explicitly list the
copy-and-move operations again:

~IntCell() { cout << "Invoking destructor" << endl; } // Destructor

IntCel1(const IntCell & rhs) = default; // Copy constructor
IntCell(IntCell && rhs) = default; // Move constructor
IntCell & operator= (const IntCell & rhs) = default; // Copy assignment
IntCell & operator= (IntCell && rhs) = default; // Move assignment

Alternatively, we could disallow all copying and moving of IntCells

IntCel1(const IntCell & rhs) = delete; // No Copy constructor
IntCel1(IntCell && rhs) = delete; // No Move constructor
IntCell & operator= (const IntCell & rhs) = delete; // No Copy assignment

IntCell & operator= (IntCell && rhs) = delete; // No Move assignment

1.5 C++ Details

If the defaults make sense in the routines we write, we will always accept them. However, if
the defaults do not make sense, we will need to implement the destructor, copy-and-move
constructors, and copy-and-move assignment operators. When the default does not work,
the copy assignment operator can generally be implemented by creating a copy using the
copy constructor and then swapping it with the existing object. The move assignment
operator can generally be implemented by swapping member by member.

When the Defaults Do Not Work

The most common situation in which the defaults do not work occurs when a data mem-
ber is a pointer type and the pointer is allocated by some object member function (such
as the constructor). As an example, suppose we implement the IntCell by dynamically
allocating an int, as shown in Figure 1.16. For simplicity, we do not separate the interface
and implementation.

There are now numerous problems that are exposed in Figure 1.17. First, the out-
put is three 4s, even though logically only a should be 4. The problem is that the
default copy assignment operator and copy constructor copy the pointer storedValue. Thus
a.storedValue, b.storedValue, and c.storedValue all point at the same int value. These
copies are shallow; the pointers rather than the pointees are copied. A second, less obvious
problem is a memory leak. The int initially allocated by a’s constructor remains allocated
and needs to be reclaimed. The int allocated by ¢’s constructor is no longer referenced by
any pointer variable. It also needs to be reclaimed, but we no longer have a pointer to it.

To fix these problems, we implement the big-five. The result (again without separation
of interface and implementation) is shown in Figure 1.18. As we can see, once the destruc-
tor is implemented, shallow copying would lead to a programming error: Two IntCell
objects would have storedValue pointing at the same int object. Once the first IntCell
object’s destructor was invoked to reclaim the object that its storedValue pointer was view-
ing, the second IntCell object would have a stale storedValue pointer. This is why C++11
has deprecated the prior behavior that allowed default copy operations even if a destructor
was written.

1 class IntCell

2 {

3 public:

4 explicit IntCell(int initialValue = 0)
5 { storedValue = new int{ initialValue }; }
6

7 int read() const

8 { return *storedValue; }

9 void write(int x)
10 { *storedValue = x; }
11
12 private:
13 int *storedValue;
14 s

Figure 1.16 Data member is a pointer; defaults are no good

33

Chapter 1 Programming: A General Overview

1 int f()

2 {

3 IntCell a{ 2 };
4 IntCell b = a;
5 IntCell c;

6

7 c = b;

8 a.write(4);
9 cout << a.read() << endl << b.read() << endl << c.read() << endl;
10

11 return 0;

12 }

Figure 1.17 Simple function that exposes problems in Figure 1.16

The copy assignment operator at lines 16-21 uses a standard idiom of checking for
aliasing at line 18 (i.e., a self-assignment, in which the client is making a call obj=obj)
and then copying each data field in turn as needed. On completion, it returns a reference
to itself using *this. In C++11, copy assignment is often written using a copy-and-swap
idiom, leading to an alternate implementation:

16 IntCell & operator= (const IntCell & rhs) // Copy assignment
17 {

18 IntCell copy = rhs;

19 std::swap(*this, copy);

20 return *this;

21 }

Line 18 places a copy of rhs into copy using the copy constructor. Then this copy is swapped
into *this, placing the old contents into copy. On return, a destructor is invoked for copy,
cleaning up the old memory. For IntCell this is a bit inefficient, but for other types, espe-
cially those with many complex interacting data members, it can be a reasonably good
default. Notice that if swap were implemented using the basic copy algorithm in Figure
1.14, the copy-and-swap idiom would not work, because there would be mutual non-
terminating recursion. In C++11 we have a basic expectation that swapping is implemented
either with three moves or by swapping member by member.

The move constructor at lines 13 and 14 moves the data representation from rhs into
*this; then it sets rhs’ primitive data (including pointers) to a valid but easily destroyed
state. Note that if there is non-primitive data, then that data must be moved in the ini-
tialization list. For example, if there were also vector<string> items, then the constructor
would be:

IntCell(IntCell && rhs) : storedValue{ rhs.storedValue }, // Move constructor
items{ std::move(rhs.items) }
{ rhs.storedValue = nullptr; }

1.5 C++ Details

1 class IntCell
2 {
3 public:
4 explicit IntCell(int initialvValue = 0)
5 { storedValue = new int{ initialValue }; }
6
7 ~IntCell() // Destructor
8 { delete storedValue; }
9
10 IntCel1(const IntCell & rhs) // Copy constructor
11 { storedValue = new int{ *rhs.storedValue }; }
12
13 IntCel1(IntCell && rhs) : storedValue{ rhs.storedValue } // Move constructor
14 { rhs.storedValue = nullptr; }
15
16 IntCell & operator= (const IntCell & rhs) // Copy assignment
17 {
18 if(this != &rhs)
19 *storedValue = *rhs.storedValue;
20 return *this;
21 }
22
23 IntCell & operator= (IntCell && rhs) // Move assignment
24 {
25 std::swap(storedValue, rhs.storedValue);
26 return *this;
27 }
28
29 int read() const
30 { return *storedValue; }
31 void write(int x)
32 { *storedValue = x; }
33
34 private:
35 int *storedValue;
36 }s

Figure 1.18 Data member is a pointer; big-five is written

Finally, the move assignment operator at lines 23-27 is implemented as a member-by-
member swap. Note that sometimes it is implemented as a single swap of objects in the
same manner as the copy assignment operator, but that only works if swap itself is imple-
mented as a member-by-member swap. If swap is implemented as three moves, then we
would have mutual nonterminating recursion.

1.5.7 C-style Arrays and Strings

The C++ language provides a built-in C-style array type. To declare an array, arrl, of 10
integers, one writes:

int arrl[10];

35

36

Chapter 1 Programming: A General Overview

arrl is actually a pointer to memory that is large enough to store 10 ints, rather than
a first-class array type. Applying = to arrays is thus an attempt to copy two pointer values
rather than the entire array, and with the declaration above, it is illegal, because arrl is
a constant pointer. When arrl is passed to a function, only the value of the pointer is
passed; information about the size of the array is lost. Thus, the size must be passed as an
additional parameter. There is no index range checking, since the size is unknown.

In the declaration above, the size of the array must be known at compile time. A
variable cannot replace 10. If the size is unknown, we must explicitly declare a pointer and
allocate memory via new[]. For instance,

int *arr2 = new int[n];

Now arr2 behaves like arrl, except that it is not a constant pointer. Thus, it can be made
to point at a larger block of memory. However, because memory has been dynamically
allocated, at some point it must be freed with delete[]:

delete [] arr2;

Otherwise, a memory leak will result, and the leak could be significant if the array is large.

Built-in C-style strings are implemented as an array of characters. To avoid having to
pass the length of the string, the special null-terminator '\0' is used as a character that
signals the logical end of the string. Strings are copied by strcpy, compared with stremp,
and their length can be determined by strlen. Individual characters can be accessed by
the array indexing operator. These strings have all the problems associated with arrays,
including difficult memory management, compounded by the fact that when strings are
copied, it is assumed that the target array is large enough to hold the result. When it is not,
difficult debugging ensues, often because room has not been left for the null terminator.

The standard vector class and string class are implemented by hiding the behavior of
the built-in C-style array and string. Chapter 3 discusses the vector class implementation.
It is almost always better to use the vector and string class, but you may be forced to use
the C-style when interacting with library routines that are designed to work with both C
and C++. It also is occasionally necessary (but this is rare) to use the C-style in a section of
code that must be optimized for speed.

1.6 Templates

Consider the problem of finding the largest item in an array of items. A simple algorithm
is the sequential scan, in which we examine each item in order, keeping track of the maxi-
mum. As is typical of many algorithms, the sequential scan algorithm is type independent.
By type independent, we mean that the logic of this algorithm does not depend on the
type of items that are stored in the array. The same logic works for an array of integers,
floating-point numbers, or any type for which comparison can be meaningfully defined.

Throughout this text, we will describe algorithms and data structures that are type
independent. When we write C++ code for a type-independent algorithm or data structure,
we would prefer to write the code once rather than recode it for each different type.

1.6 Templates

In this section, we will describe how type-independent algorithms (also known as
generic algorithms) are written in C++ using the template. We begin by discussing function
templates. Then we examine class templates.

1.6.1 Function Templates

Function templates are generally very easy to write. A function template is not an actual
function, but instead is a pattern for what could become a function. Figure 1.19 illustrates
a function template findMax. The line containing the template declaration indicates that
Comparable is the template argument: It can be replaced by any type to generate a function.
For instance, if a call to findMax is made with a vector<string> as parameter, then a function
will be generated by replacing Comparable with string.

Figure 1.20 illustrates that function templates are expanded automatically as needed.
It should be noted that an expansion for each new type generates additional code; this is
known as code bloat when it occurs in large projects. Note also that the call findMax(v4)
will result in a compile-time error. This is because when Comparable is replaced by IntCell,
line 12 in Figure 1.19 becomes illegal; there is no < function defined for IntCel1. Thus, it
is customary to include, prior to any template, comments that explain what assumptions
are made about the template argument(s). This includes assumptions about what kinds of
constructors are required.

Because template arguments can assume any class type, when deciding on parameter-
passing and return-passing conventions, it should be assumed that template arguments are
not primitive types. That is why we have returned by constant reference.

Not surprisingly, there are many arcane rules that deal with function templates. Most of
the problems occur when the template cannot provide an exact match for the parameters
but can come close (through implicit type conversions). There must be ways to resolve

1 /**

2 * Return the maximum item in array a.

3 * Assumes a.size() > 0.

4 * Comparable objects must provide operator< and operator=
5 */

6 template <typename Comparable>

7 const Comparable & findMax(const vector<Comparable> & a)
8 |

9 int maxIndex = 0;
10
11 for(int 1 = 1; 1 < a.size(); ++i)
12 if(a[maxIndex] <a[i])
13 maxIndex = i;
14 return a[maxIndex];
15}

Figure 1.19 findMax function template

37

38

Chapter 1 Programming: A General Overview

1 int main()

2

3 vector<int> vi(37);

4 vector<double> v2(40);

5 vector<string> v3(80);

6 vector<IntCell> v4(75);

7

8 // Additional code to fill in the vectors not shown

9
10 cout << findMax(vl) << endl; // OK: Comparable = int
11 cout << findMax(v2) << endl; // OK: Comparable = double
12 cout << findMax(v3) << endl; // OK: Comparable = string
13 cout << findMax(v4) << endl; // I1legal; operator< undefined
14
15 return 0;

16}

Figure 1.20 Using findMax function template

ambiguities, and the rules are quite complex. Note that if there is a nontemplate and a
template and both match, then the nontemplate gets priority. Also note that if there are two
equally close approximate matches, then the code is illegal and the compiler will declare
an ambiguity.

1.6.2 Class Templates

In the simplest version, a class template works much like a function template. Figure 1.21
shows the MemoryCel1 template. MemoryCel1 is like the IntCell class, but works for any type

1 /**

2 * A class for simulating a memory cell.
3 */

4 template <typename Object>

5 class MemoryCell

6 |

7 pubTic:

8 explicit MemoryCell(const Object & initialValue = Object{ })
9 : storedValue{ initialValue } { }
10 const Object & read() const
11 { return storedValue; }
12 void write(const Object & x)
13 { storedValue = x; }
14 private:
15 Object storedValue;
16}

Figure 1.21 MemoryCell class template without separation

1.6 Templates

1 int main()

2

3 MemoryCell<int> ml;

4 MemoryCell<string> m2{ "hello" };
5

6 ml.write(37);

7 m2.write(m2.read() + "world");
8 cout << ml.read() << endl << m2.read() << endl;
9
10 return 0;
11}

Figure 1.22 Program that uses MemoryCel1 class template

Object, provided that Object has a zero-parameter constructor, a copy constructor, and a
copy assignment operator.

Notice that Object is passed by constant reference. Also, notice that the default param-
eter for the constructor is not 0, because 0 might not be a valid Object. Instead, the default
parameter is the result of constructing an Object with its zero-parameter constructor.

Figure 1.22 shows how the MemoryCell can be used to store objects of both prim-
itive and class types. Notice that MemoryCell is not a class; it is only a class template.
MemoryCell<int> and MemoryCell<string> are the actual classes.

If we implement class templates as a single unit, then there is very little syntax baggage.
Many class templates are, in fact, implemented this way because, currently, separate com-
pilation of templates does not work well on many platforms. Therefore, in many cases, the
entire class, with its implementation, must be placed in a .h file. Popular implementations
of the STL follow this strategy.

An alternative, discussed in Appendix A, is to separate the interface and implementa-
tion of the class templates. This adds extra syntax and baggage and historically has been
difficult for compilers to handle cleanly. To avoid the extra syntax throughout this text, we
provide, when necessary, in the online code, class templates with no separation of interface
and implementation. In the figures, the interface is shown as if separate compilation was
used, but the member function implementations are shown as if separate compilation was
avoided. This allows us to avoid focusing on syntax.

1.6.3 Object, Comparable, and an Example

In this text, we repeatedly use Object and Comparable as generic types. Object is assumed
to have a zero-parameter constructor, an operator=, and a copy constructor. Comparable, as
suggested in the findMax example, has additional functionality in the form of operator< that
can be used to provide a total order.”

>Some of the data structures in Chapter 12 use operator== in addition to operator<. Note that for the
purpose of providing a total order, a==b if both a<b and b<a are false; thus the use of operator== is simply
for convenience.

39

40

Chapter 1 Programming: A General Overview

1 class Square
2 {
3 pubTic:
4 explicit Square(double s = 0.0) : side{ s }
5 {1}
6
7 double getSide() const
8 { return side; }
9 double getArea() const
10 { return side * side; }
11 double getPerimeter() const
12 { return 4 * side; }
13
14 void print(ostream & out = cout) const
15 { out << "(square " << getSide() << ")"; }
16 bool operator< (const Square & rhs) const
17 { return getSide() < rhs.getSide(); }
18
19 private:
20 double side;
21 }s
22
23 // Define an output operator for Square
24 ostream & operator<< (ostream & out, const Square & rhs)
25 {
26 rhs.print(out);
27 return out;
28 }
29
30 int main()
31 {
32 vector<Square> v = { Square{ 3.0 }, Square{ 2.0 }, Square{ 2.5 } };
33
34 cout << "Largest square: " << findMax(v) << endl;
35
36 return 0;
37 }

Figure 1.23 Comparable can be a class type, such as Square

Figure 1.23 shows an example of a class type that implements the functionality
required of Comparable and illustrates operator overloading. Operator overloading allows
us to define the meaning of a built-in operator. The Square class represents a square
by storing the length of a side and defines operator<. The Square class also provides a
zero-parameter constructor, operator=, and copy constructor (all by default). Thus, it has
enough to be used as a Comparable in findMax.

1.6 Templates

Figure 1.23 shows a minimal implementation and also illustrates the widely used idiom
for providing an output function for a new class type. The idiom is to provide a public
member function, named print, that takes an ostream as a parameter. That public member
function can then be called by a global, nonclass function, operator<<, that accepts an
ostream and an object to output.

1.6.4 Function Objects

In Section 1.6.1, we showed how function templates can be used to write generic algo-
rithms. As an example, the function template in Figure 1.19 can be used to find the
maximum item in an array.

However, the template has an important limitation: It works only for objects that
have an operator< function defined, and it uses that operator< as the basis for all com-
parison decisions. In many situations, this approach is not feasible. For instance, it is a
stretch to presume that a Rectangle class will implement operator<, and even if it does, the
compareTo method that it has might not be the one we want. For instance, given a 2-
by-10 rectangle and a 5-by-5 rectangle, which is the larger rectangle? The answer would
depend on whether we are using area or width to decide. Or perhaps if we are try-
ing to fit the rectangle through an opening, the larger rectangle is the rectangle with
the larger minimum dimension. As a second example, if we wanted to find the max-
imum string (alphabetically last) in an array of strings, the default operator< does not
ignore case distinctions, so “ZEBRA” would be considered to precede “alligator” alphabet-
ically, which is probably not what we want. A third example would occur if we had an
array of pointers to objects (which would be common in advanced C++ programs that
make use of a feature known as inheritance, which we do not make much use of in this
text).

The solution, in these cases, is to rewrite findMax to accept as parameters an array of
objects and a comparison function that explains how to decide which of two objects is
the larger and which is the smaller. In effect, the array objects no longer know how to
compare themselves; instead, this information is completely decoupled from the objects in
the array.

An ingenious way to pass functions as parameters is to notice that an object contains
both data and member functions, so we can define a class with no data and one member
function, and pass an instance of the class. In effect, a function is being passed by placing
it inside an object. This object is commonly known as a function object.

Figure 1.24 shows the simplest implementation of the function object idea. findMax
takes a second parameter, which is a generic type. In order for the findMax tem-
plate to expand without error, the generic type must have a member function named
isLessThan, which takes two parameters of the first generic type (Object) and returns a
bool. Otherwise, an error will be generated at line 9 when the template expansion is
attempted by the compiler. At line 25, we can see that findMax is called by passing an
array of string and an object that contains an isLessThan method with two strings as
parameters.

C++ function objects are implemented using this basic idea, but with some fancy syn-
tax. First, instead of using a function with a name, we use operator overloading. Instead
of the function being isLessThan, it is operator(). Second, when invoking operator(),

41

42

Chapter 1 Programming: A General Overview

1 // Generic findMax, with a function object, Version #1.
2 // Precondition: a.size() > 0.
3 template <typename Object, typename Comparator>
4 const Object & findMax(const vector<Object> & arr, Comparator cmp)
5 {
6 int maxIndex = 0;
7
8 for(int i = 1; i < arr.size(); ++i)
9 if(cmp.isLessThan(arr[maxIndex], arr[i]))
10 maxIndex = i;
11
12 return arr[maxIndex];
13 }
14
15 class CaselnsensitiveCompare
16 {
17 pubTic:
18 bool isLessThan(const string & lhs, const string & rhs) const
19 { return strcasecmp(Ths.c_str(), rhs.c_str()) < 0; }
20 }s
21
22 int main()
23 {
24 vector<string> arr = { "ZEBRA", "alligator", "crocodile" };
25 cout << findMax(arr, CaselnsensitiveCompare{ }) << endl;
26
27 return 0;
28 }

Figure 1.24 Simplest idea of using a function object as a second parameter to findMax;
output is ZEBRA

cmp.operator() (x,y) can be shortened to cmp(x,y) (in other words, it looks like a function
call, and consequently operator() is known as the function call operator). As a result, the
name of the parameter can be changed to the more meaningful isLessThan, and the call
is isLessThan(x,y). Third, we can provide a version of findMax that works without a func-
tion object. The implementation uses the Standard Library function object template less
(defined in header file functional) to generate a function object that imposes the normal
default ordering. Figure 1.25 shows the implementation using the more typical, somewhat
cryptic, C++ idioms.

In Chapter 4, we will give an example of a class that needs to order the items it stores.
We will write most of the code using Comparable and show the adjustments needed to use
the function objects. Elsewhere in the book, we will avoid the detail of function objects to
keep the code as simple as possible, knowing that it is not difficult to add function objects
later

—_ —
— O O 0 N LW N =

W W W W W W W W N DM RN DN DN DN DN DN = = = =
N Uk LW N = O V0N R W= O WV oYL W

38

1.6 Templates

// Generic findMax, with a function object, C++ style.

// Precondition: a.size() > 0.

template <typename Object, typename Comparator>

const Object & findMax(const vector<Object> & arr, Comparator isLessThan)

{

int maxIndex = 0;

for(int 1 = 1; i < arr.size(); ++i)
if(isLessThan(arr[maxIndex], arr[1]))
maxIndex = i;

return arr[maxIndex];

// Generic findMax, using default ordering.

#include <functional>

template <typename Object>

const Object & findMax(const vector<Object> & arr)

{

return findMax(arr, less<Object>{ });

class CaselnsensitiveCompare

{
public:
bool operator()(const string & Ths, const string & rhs) const
{ return strcasecmp(Ths.c_str(), rhs.c_str()) < 0; }

}s

int main()

{

vector<string> arr = { "ZEBRA", "alligator", "crocodile" };

cout << findMax(arr, CaselnsensitiveCompare{ }) << endl;
cout << findMax(arr) << endl;

return 0;

}

Figure 1.25 Using a function object C++ style, with a second version of findMax; output
is ZEBRA, then crocodile

43

44

Chapter 1 Programming: A General Overview

1.6.5 Separate Compilation of Class Templates

Like regular classes, class templates can be implemented either entirely in their decla-
rations, or we can separate the interface from the implementation. However, compiler
support for separate compilation of templates historically has been weak and platform-
specific. Thus, in many cases, the entire class template with its implementation is placed in
a single header file. Popular implementations of the Standard Library follow this strategy
to implement class templates.

Appendix A describes the mechanics involved in the separate compilation of templates.
The declaration of the interface for a template is exactly what you would expect: The
member functions end with a single semicolon, instead of providing an implementation.
But as shown in Appendix A, the implementation of the member functions can introduce
complicated-looking syntax, especially for complicated functions like operator=. Worse,
when compiling, the compiler will often complain about missing functions, and avoiding
this problem requires platform-specific solutions.

Consequently, in the online code that accompanies the text, we implement all class
templates entirely in its declaration in a single header file. We do so because it seems to be
the only way to avoid compilation problems across platforms. In the text, when illustrating
the code, we provide the class interface as if separate compilation was in order, since that
is easily presentable, but implementations are shown as in the online code. In a platform-
specific manner, one can mechanically transform our single header file implementations
into separate compilation implementations if desired. See Appendix A for some of the
different scenarios that might apply.

1.7 Using Matrices

Several algorithms in Chapter 10 use two-dimensional arrays, which are popularly known
as matrices. The C++ library does not provide a matrix class. However, a reason-
able matrix class can quickly be written. The basic idea is to use a vector of vectors.
Doing this requires additional knowledge of operator overloading. For the matrix, we
define operator[], namely, the array-indexing operator. The matrix class is given in
Figure 1.26.

1.7.1 The Data Members, Constructor, and Basic
Accessors

The matrix is represented by an array data member that is declared to be a vector of
vector<Object>. The constructor first constructs array as having rows entries each of type
vector<Object> that is constructed with the zero-parameter constructor. Thus, we have rows
zero-length vectors of Object.

The body of the constructor is then entered, and each row is resized to have cols
columns. Thus the constructor terminates with what appears to be a two-dimensional
array. The numrows and numcols accessors are then easily implemented, as shown.

1.7 Using Matrices

1 #ifndef MATRIX_H

2 #define MATRIX_H

3

4 #include <vector>

5 using namespace std;

6

7 template <typename Object>

8 class matrix

9 {

10 public:

11 matrix(int rows, int cols) : array(rows)

12 {

13 for(auto & thisRow : array)

14 thisRow.resize(cols);

15 }

16

17 matrix(vector<vector<Object>> v) : array{ v }
18 {1}

19 matrix(vector<vector<Object>> && v) : array{ std::move(v) }
20 {1}
21
22 const vector<Object> & operator[](int row) const
23 { return array[row]; }
24 vector<Object> & operator[](int row)
25 { return array[row]; }
26
27 int numrows() const
28 { return array.size(); }
29 int numcols() const
30 { return numrows() ? array[0]J.size() : 0; }
31 private:
32 vector<vector<Object>> array;
33 }s
34 #endif

Figure 1.26 A complete matrix class

1.7.2 operator[]

The idea of operator[] is that if we have a matrix m, then m[i] should return a vector
corresponding to row i of matrix m. If this is done, then m[i][j] will give the entry in
position j for vector m[i], using the normal vector indexing operator. Thus, the matrix
operator[] returns a vector<Object> rather than an Object.

45

46

Chapter 1 Programming: A General Overview

We now know that operator[] should return an entity of type vector<Object>. Should
we use return-by-value, return-by-reference, or return-by-constant-reference? Immediately
we eliminate return-by-value, because the returned entity is large but guaranteed to exist
after the call. Thus, we are down to return-by-reference or return-by-constant-reference.
Consider the following method (ignore the possibility of aliasing or incompatible sizes,
neither of which affects the algorithm):

void copy(const matrix<int> & from, matrix<int> & to)
{
for(int 1 = 0; 1 < to.numrows(); ++i)
to[i] = from[i];
}

In the copy function, we attempt to copy each row in matrix from into the corresponding
row in matrix to. Clearly, if operator[] returns a constant reference, then to[i] cannot
appear on the left side of the assignment statement. Thus, it appears that operator[] should
return a reference. However, if we did that, then an expression such as from[i]=to[i] would
compile, since from[i] would not be a constant vector, even though from was a constant
matrix. That cannot be allowed in a good design.

So what we really need is for operator[] to return a constant reference for from, but
a plain reference for to. In other words, we need two versions of operator[], which differ
only in their return types. That is not allowed. However, there is a loophole: Since member
function const-ness (i.e., whether a function is an accessor or a mutator) is part of the
signature, we can have the accessor version of operator[] return a constant reference, and
have the mutator version return the simple reference. Then, all is well. This is shown in
Figure 1.26.

1.7.3 Big-Five

These are all taken care of automatically, because the vector has taken care of it. Therefore,
this is all the code needed for a fully functioning matrix class.

Summary

This chapter sets the stage for the rest of the book. The time taken by an algorithm con-
fronted with large amounts of input will be an important criterion for deciding if it is a
good algorithm. (Of course, correctness is most important.) We will begin to address these
issues in the next chapter and will use the mathematics discussed here to establish a formal
model.

Exercises

1.1 Write a program to solve the selection problem. Let k = N/2. Draw a table showing
the running time of your program for various values of N.

1.2 Write a program to solve the word puzzle problem.

Exercises

1.3 Write a function to output an arbitrary double number (which might be negative)
using only printDigit for I/O.

1.4 C++ allows statements of the form
#include filename

which reads filename and inserts its contents in place of the include statement.
Include statements may be nested; in other words, the file filename may itself con-
tain an include statement, but, obviously, a file can’t include itself in any chain.
Write a program that reads in a file and outputs the file as modified by the include
statements.

1.5 Write a recursive function that returns the number of 1 in the binary representation
of N. Use the fact that this is equal to the number of 1 in the representation of N/2,
plus 1, if N is odd.

1.6 Write the routines with the following declarations:

void permute(const string & str);
void permute(const string & str, int lTow, int high);

The first routine is a driver that calls the second and prints all the permutations of
the characters in string str. If stris "abc", then the strings that are output are abc,
ach, bac, bca, cab, and cba. Use recursion for the second routine.

1.7 Prove the following formulas:
a. logX < XforallX > 0
b. log(AB) = BlogA

1.8 Evaluate the following sums:
oo 1
a. Zl:0$
oo i
b. Zi:OI
* oo iz
c. Zi=0$
N
d Y Ew
1.9 Estimate

N

2

i=[N/2]

[

*1.10 What is 2'% (mod 5)?
1.11 Let F; be the Fibonacci numbers as defined in Section 1.2. Prove the following:
N-2
a. Zi:l F]' =Fy— 2
b. Fxy < ¢V, with ¢ = (1 +/5)/2
**¢. Give a precise closed-form expression for Fy.
1.12 Prove the following formulas:
a YN, Qi-1D=N?

b. 21N=1 P = (Zil i>2

47

48

Chapter 1 Programming: A General Overview

1.13 Design a class template, Collection, that stores a collection of Objects (in an array),
along with the current size of the collection. Provide public functions isEmpty,
makeEmpty, insert, remove, and contains. contains(x) returns true if and only if an
Object that is equal to x is present in the collection.

1.14 Design a class template, OrderedCollection, that stores a collection of Comparables
(in an array), along with the current size of the collection. Provide public functions
isEmpty, makeEmpty, insert, remove, findMin, and findMax. findMin and findMax return
references to the smallest and largest, respectively, Comparable in the collection.
Explain what can be done if these operations are performed on an empty collection.

1.15 Define a Rectangle class that provides getLength and getWidth. Using the findMax
routines in Figure 1.25, write amain that creates an array of Rectangle and finds the
largest Rectangle first on the basis of area and then on the basis of perimeter.

1.16 Forthematrix class, add a resize member function and zero-parameter constructor.

References

There are many good textbooks covering the mathematics reviewed in this chapter. A small
subset is [1], [2], [3], [9], [14], and [16]. Reference [9] is specifically geared toward the
analysis of algorithms. It is the first volume of a three-volume series that will be cited
throughout this text. More advanced material is covered in [6].

Throughout this book, we will assume a knowledge of C++. For the most part, [15]
describes the final draft standard of C++11, and, being written by the original designer of
C++, remains the most authoritative. Another standard reference is [10]. Advanced topics
in C++ are discussed in [5]. The two-part series [11, 12] gives a great discussion of the
many pitfalls in C++. The Standard Template Library, which we will investigate throughout
this text, is described in [13]. The material in Sections 1.4-1.7 is meant to serve as an
overview of the features that we will use in this text. We also assume familiarity with
pointers and recursion (the recursion summary in this chapter is meant to be a quick
review). We will attempt to provide hints on their use where appropriate throughout the
textbook. Readers not familiar with these should consult [17] or any good intermediate
programming textbook.

General programming style is discussed in several books. Some of the classics are [4],
[7], and [8].

1. M. O. Albertson and J. P Hutchinson, Discrete Mathematics with Algorithms, John Wiley &
Sons, New York, 1988.

. Z. Bavel, Math Companion for Computer Science, Reston Publishing Co., Reston, Va., 1982.
. R.A. Brualdi, Introductory Combinatorics, 5th ed., Pearson, Boston, Mass, 2009.

. E. W. Dijkstra, A Discipline of Programming, Prentice Hall, Englewood Cliffs, N J., 1976.

. B. Eckel, Thinking in C++, 2d ed., Prentice Hall, Englewood Cliffs, N.J., 2002.

. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley,
Reading, Mass., 1989.

7. D. Gries, The Science of Programming, Springer-Verlag, New York, 1981.

N U AW N

10.
11.

12.

13.

14.

15.

16.
17.

References

. B. W. Kernighan and P. J. Plauger, The Elements of Programming Style, 2d ed., McGraw-Hill,

New York, 1978.

. D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d ed.,

Addison-Wesley, Reading, Mass., 1997.
S. B. Lippman, J. Lajoie, and B. E. Moo, C++ Primer, 5th ed., Pearson, Boston, Mass., 2013.

S. Meyers, 50 Specific Ways to Improve Your Programs and Designs, 3d ed., Addison-Wesley,
Boston, Mass., 2005.

S. Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs, Addison-
Wesley, Reading, Mass., 1996.

D. R. Musser, G. J. Durge, and A. Saini, STL Tutorial and Reference Guide: C++ Programming
with the Standard Template Library, 2d ed., Addison-Wesley, Reading, Mass., 2001.

E S. Roberts and B. Tesman, Applied Combinatorics, 2d ed., Prentice Hall, Englewood Cliffs,
N.J., 2003.

B. Stroustrop, The C++ Programming Language, 4th ed., Pearson, Boston, Mass., 2013.

A. Tucker, Applied Combinatorics, 6th ed., John Wiley & Sons, New York, 2012.

M. A. Weiss, Algorithms, Data Structures, and Problem Solving with C++, 2nd ed., Addison-
Wesley, Reading, Mass., 2000.

49

This page intentionally left blank

. cnapTeR 2

Algorithm Analysis

An algorithm is a clearly specified set of simple instructions to be followed to solve a
problem. Once an algorithm is given for a problem and decided (somehow) to be correct,
an important step is to determine how much in the way of resources, such as time or space,
the algorithm will require. An algorithm that solves a problem but requires a year is hardly
of any use. Likewise, an algorithm that requires thousands of gigabytes of main memory is
not (currently) useful on most machines.

In this chapter, we shall discuss. ..

* How to estimate the time required for a program.

* How to reduce the running time of a program from days or years to fractions of a
second.

* The results of careless use of recursion.

* Very efficient algorithms to raise a number to a power and to compute the greatest
common divisor of two numbers.

2.1 Mathematical Background

The analysis required to estimate the resource use of an algorithm is generally a theoretical
issue, and therefore a formal framework is required. We begin with some mathematical
definitions.

Throughout this book, we will use the following four definitions:

Definition 2.1
T(N) = O(f(N)) if there are positive constants ¢ and ng such that T(N) < ¢f(N) when
N > np.

Definition 2.2
T(N) = Q(g(N)) if there are positive constants ¢ and ng such that T(N) > cg(N) when
N > np.

Definition 2.3
T(N) = ©(h(N)) if and only if T(N) = O(h(N)) and T(N) = Q(h(N)).

Definition 2.4
T(N) = o(p(N)) if, for all positive constants c, there exists an ng such that T(N) < cp(N)
when N > ng. Less formally, T(N) = o(p(N)) if T(N) = O(p(N)) and T(N) # O(p(N)).

51

52

Chapter 2 Algorithm Analysis

The idea of these definitions is to establish a relative order among functions. Given two
functions, there are usually points where one function is smaller than the other. So it does
not make sense to claim, for instance, f(N) < g(N). Thus, we compare their relative rates
of growth. When we apply this to the analysis of algorithms, we shall see why this is the
important measure.

Although 1,000N is larger than N2 for small values of N, N? grows at a faster rate, and
thus N2 will eventually be the larger function. The turning point is N = 1,000 in this case.
The first definition says that eventually there is some point ng past which ¢ - f(N) is always
at least as large as T(N), so that if constant factors are ignored, f(N) is at least as big as
T(N). In our case, we have T(N) = 1,000N, f(N) = N2 np = 1,000, and ¢ = 1. We could
also use np = 10 and ¢ = 100. Thus, we can say that 1,000N = O(N?) (order N-squared).
This notation is known as Big-Oh notation. Frequently, instead of saying “order...,” one
says “Big-Oh....”

If we use the traditional inequality operators to compare growth rates, then the first
definition says that the growth rate of T(N) is less than or equal to (<) that of f(N). The
second definition, T(N) = Q(g(N)) (pronounced “omega”), says that the growth rate of
T(N) is greater than or equal to (>) that of g(N). The third definition, T(N) = @(h(N))
(pronounced “theta”), says that the growth rate of T(N) equals (=) the growth rate of h(N).
The last definition, T(N) = o(p(N)) (pronounced “little-oh”), says that the growth rate of
T(N) is less than (<) the growth rate of p(N). This is different from Big-Oh, because Big-Oh
allows the possibility that the growth rates are the same.

To prove that some function T(N) = O(f(N)), we usually do not apply these defini-
tions formally but instead use a repertoire of known results. In general, this means that a
proof (or determination that the assumption is incorrect) is a very simple calculation and
should not involve calculus, except in extraordinary circumstances (not likely to occur in
an algorithm analysis).

When we say that T(N) = O(f(N)), we are guaranteeing that the function T(N) grows
at a rate no faster than f(N); thus f(N) is an upper bound on T(N). Since this implies that
fN) = Q(T(N)), we say that T(N) is a lower bound on f(N).

As an example, N° grows faster than N2, so we can say that N> = O(N?) or N> =
Q(Nz).f(N) = N? and a(N) = 2N? grow at the same rate, so both f(N) = O(g(N)) and
FIN) = Q(g(N)) are true. When two functions grow at the same rate, then the decision of
whether or not to signify this with ®() can depend on the particular context. Intuitively,
if g(N) = 2N?2. then gN) = ONY), g(N) = O(N?), and giN) = O(N?) are all technically
correct, but the last option is the best answer. Writing g(N) = ®(N?) says not only that
g(N) = O(N?) but also that the result is as good (tight) as possible.

Here are the important things to know:

Rule 1
I T)(N) = O(f(N)) and To(N) = O(g(N)), then
(@ T1(N) + To(N) = O(f(N) + g(N)) (intuitively and less formally it is
O(max(f(N), g(N))),
(b) TH(N) * To(N) = O(f(N) * g(N)).

Rule 2
If T(N) is a polynomial of degree k, then T(N) = ©(N").

2.1 Mathematical Background

Function Name

c Constant
logN Logarithmic
log® N Log-squared
N Linear
NlogN

N? Quadratic
N3 Cubic

2N Exponential

Figure 2.1 Typical growth rates

Rule 3
log" N = O(N) for any constant k. This tells us that logarithms grow very slowly.

This information is sufficient to arrange most of the common functions by growth rate
(see Fig. 2.1).

Several points are in order. First, it is very bad style to include constants or low-order
terms inside a Big-Oh. Do not say T(N) = O(2N?) or T(N) = O(N* +N). In both cases, the
correct form is T(N) = O(N?). This means that in any analysis that will require a Big-Oh
answer, all sorts of shortcuts are possible. Lower-order terms can generally be ignored, and
constants can be thrown away. Considerably less precision is required in these cases.

Second, we can always determine the relative growth rates of two functions f(N) and
g(N) by computing limy_, o f(N)/g(N), using CHopital’s rule if necessary.1 The limit can
have four possible values:

* The limit is 0: This means that f(N) = o(g(N)).
¢ The limit is ¢ # 0: This means that f(N) = G(g(N)).
* The limit is co: This means that g(N) = o(f(N)).

* The limit does not exist: There is no relation (this will not happen in our context).

Using this method almost always amounts to overkill. Usually the relation between f(N)
and g(N) can be derived by simple algebra. For instance, if f(N) = NlogN and g(N) =
N1 then to decide which of f(N) and g(N) grows faster, one really needs to determine
which of logN and N 0.5 grows faster. This is like determining which of 10g2 N or N grows
faster. This is a simple problem, because it is already known that N grows faster than any
power of a log. Thus, g(N) grows faster than f(N).

One stylistic note: It is bad to say f(N) < O(g(N)), because the inequality is implied by
the definition. It is wrong to write f(N) > O(g(N)), because it does not make sense.

lL’Hc’)pital’s rule states that if limy_, o f(N) = 00 and limy_.0 g(N) = o0, then limn_ o0 f(N)/g(N) =
limyn— 00 /' (N)/¢'(N), where f/(N) and ¢'(N) are the derivatives of f(N) and g(N), respectively.

53

54

Chapter 2 Algorithm Analysis

As an example of the typical kinds of analyses that are performed, consider the prob-
lem of downloading a file over the Internet. Suppose there is an initial 3-sec delay (to
set up a connection), after which the download proceeds at 1.5M(bytes)/sec. Then it fol-
lows that if the file is N megabytes, the time to download is described by the formula
T(N) = N/1.5 4+ 3. This is a linear function. Notice that the time to download a 1,500M
file (1,003 sec) is approximately (but not exactly) twice the time to download a 750M file
(503 sec). This is typical of a linear function. Notice, also, that if the speed of the con-
nection doubles, both times decrease, but the 1,500M file still takes approximately twice
the time to download as a 750M file. This is the typical characteristic of linear-time algo-
rithms, and it is the reason we write T(N) = O(N), ignoring constant factors. (Although
using big-theta would be more precise, Big-Oh answers are typically given.)

Observe, too, that this behavior is not true of all algorithms. For the first selection
algorithm described in Section 1.1, the running time is controlled by the time it takes to
perform a sort. For a simple sorting algorithm, such as the suggested bubble sort, when the
amount of input doubles, the running time increases by a factor of four for large amounts
of input. This is because those algorithms are not linear. Instead, as we will see when we
discuss sorting, trivial sorting algorithms are O(N?), or quadratic.

2.2 Model

In order to analyze algorithms in a formal framework, we need a model of computation.
Our model is basically a normal computer in which instructions are executed sequentially.
Our model has the standard repertoire of simple instructions, such as addition, multiplica-
tion, comparison, and assighment, but, unlike the case with real computers, it takes exactly
one time unit to do anything (simple). To be reasonable, we will assume that, like a modern
computer, our model has fixed-size (say, 32-bit) integers and no fancy operations, such as
matrix inversion or sorting, which clearly cannot be done in one time unit. We also assume
infinite memory.

This model clearly has some weaknesses. Obviously, in real life, not all operations take
exactly the same time. In particular, in our model, one disk reads counts the same as an
addition, even though the addition is typically several orders of magnitude faster. Also, by
assuming infinite memory, we ignore the fact that the cost of a memory access can increase
when slower memory is used due to larger memory requirements.

2.3 What to Analyze

The most important resource to analyze is generally the running time. Several factors affect
the running time of a program. Some, such as the compiler and computer used, are obvi-
ously beyond the scope of any theoretical model, so, although they are important, we
cannot deal with them here. The other main factors are the algorithm used and the input
to the algorithm.

Typically, the size of the input is the main consideration. We define two functions,
Tavg(N) and Tyors(N), as the average and worst-case running time, respectively, used by
an algorithm on input of size N. Clearly, Tayg(N) < Tyors(N). If there is more than one
input, these functions may have more than one argument.

2.3 What to Analyze

Occasionally, the best-case performance of an algorithm is analyzed. However, this is
often of little interest, because it does not represent typical behavior. Average-case perfor-
mance often reflects typical behavior, while worst-case performance represents a guarantee
for performance on any possible input. Notice also that, although in this chapter we ana-
lyze C++ code, these bounds are really bounds for the algorithms rather than programs.
Programs are an implementation of the algorithm in a particular programming language,
and almost always the details of the programming language do not affect a Big-Oh answer.
If a program is running much more slowly than the algorithm analysis suggests, there may
be an implementation inefficiency. This can occur in C++ when arrays are inadvertently
copied in their entirety, instead of passed with references. Another extremely subtle exam-
ple of this is in the last two paragraphs of Section 12.6. Thus in future chapters, we will
analyze the algorithms rather than the programs.

Generally, the quantity required is the worst-case time, unless otherwise specified. One
reason for this is that it provides a bound for all input, including particularly bad input,
which an average-case analysis does not provide. The other reason is that average-case
bounds are usually much more difficult to compute. In some instances, the definition
of “average” can affect the result. (For instance, what is average input for the following
problem?)

As an example, in the next section, we shall consider the following problem:

Maximum Subsequence Sum Problem

Given (possibly negative) integers A1, Ay, . . . , Ay, find the maximum value of ZL:i Ap.
(For convenience, the maximum subsequence sum is 0 if all the integers are negative.)
Example:

For input —2, 11, —4, 13, —5, —2, the answer is 20 (A, through A4).

This problem is interesting mainly because there are so many algorithms to solve
it, and the performance of these algorithms varies drastically. We will discuss four algo-
rithms to solve this problem. The running time on some computers (the exact computer is
unimportant) for these algorithms is given in Figure 2.2.

There are several important things worth noting in this table. For a small amount of
input, the algorithms all run in the blink of an eye. So if only a small amount of input is

Algorithm Time

Input 1 2 3 4
Size ON?) ON?) O(NlogN) O(N)

N =100 0.000159 0.000006 0.000005 0.000002
N = 1,000 0.095857 0.000371 0.000060 0.000022
N = 10,000 86.67 0.033322 0.000619 0.000222
N = 100,000 NA 3.33 0.006700 0.002205
N = 1,000,000 NA NA 0.074870 0.022711

Figure 2.2 Running times of several algorithms for maximum subsequence sum (in
seconds)

55

56

Chapter 2 Algorithm Analysis

expected, it might be silly to expend a great deal of effort to design a clever algorithm. On
the other hand, there is a large market these days for rewriting programs that were written
five years ago based on a no-longer-valid assumption of small input size. These programs
are now too slow because they used poor algorithms. For large amounts of input, algorithm
4 is clearly the best choice (although algorithm 3 is still usable).

Second, the times given do not include the time required to read the input. For algo-
rithm 4, the time merely to read the input from a disk is likely to be an order of magnitude
larger than the time required to solve the problem. This is typical of many efficient algo-
rithms. Reading the data is generally the bottleneck; once the data are read, the problem
can be solved quickly. For inefficient algorithms this is not true, and significant com-
puter resources must be used. Thus, it is important that, whenever possible, algorithms
be efficient enough not to be the bottleneck of a problem.

Notice that for algorithm 4, which is linear, as the problem size increases by a factor
of 10, so does the running time. Algorithm 2, which is quadratic, does not display this
behavior; a tenfold increase in input size yields roughly a hundredfold (10?) increase in
running time. And algorithm 1, which is cubic, yields a thousandfold (10°) increase in
running time. We would expect algorithm 1 to take nearly 9,000 seconds (or two and a
half hours) to complete for N = 100,000. Similarly, we would expect algorithm 2 to take
roughly 333 seconds to complete for N = 1,000,000. However, it is possible that algorithm
2 could take somewhat longer to complete due to the fact that N = 1,000,000 could also
yield slower memory accesses than N = 100,000 on modern computers, depending on
the size of the memory cache.

Figure 2.3 shows the growth rates of the running times of the four algorithms. Even
though this graph encompasses only values of N ranging from 10 to 100, the relative

Linear
O(NlogN) -----
Quadratic
Cubic =—=—

|
|
I
]
|
|
/
/
/

Running Time

O | | | | | | | | |
10 20 30 40 50 60 70 80 90 100

Input Size (N)

Figure 2.3 Plot (N vs. time) of various algorithms

2.4 Running-Time Calculations

T T T T T T T T T
Linear —— L’
O(NlogN) ----- e
Quadratic .
Cubic =—=— .

Running Time

0 + + T T 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Input Size (N)

Figure 2.4 Plot (N vs. time) of various algorithms

growth rates are still evident. Although the graph for the O(N log N) seems linear, it is easy
to verify that it is not by using a straightedge (or piece of paper). Although the graph for
the O(N) algorithm seems constant, this is only because for small values of N, the constant
term is larger than the linear term. Figure 2.4 shows the performance for larger values.
It dramatically illustrates how useless inefficient algorithms are for even moderately large
amounts of input.

2.4 Running-Time Calculations

There are several ways to estimate the running time of a program. The previous table was
obtained empirically. If two programs are expected to take similar times, probably the best
way to decide which is faster is to code them both and run them!

Generally, there are several algorithmic ideas, and we would like to eliminate the bad
ones early, so an analysis is usually required. Furthermore, the ability to do an analysis
usually provides insight into designing efficient algorithms. The analysis also generally
pinpoints the bottlenecks, which are worth coding carefully.

To simplify the analysis, we will adopt the convention that there are no particular
units of time. Thus, we throw away leading constants. We will also throw away low-
order terms, so what we are essentially doing is computing a Big-Oh running time. Since
Big-Oh is an upper bound, we must be careful never to underestimate the running time
of the program. In effect, the answer provided is a guarantee that the program will ter-
minate within a certain time period. The program may stop earlier than this, but never
later.

57

58

Chapter 2 Algorithm Analysis

2.4.1 A Simple Example

Here is a simple program fragment to calculate Zil i3

int sum(int n)
{

int partialSum;

partialSum = 0;
for(int i = 1; i <= n; ++i)
partialSum += i * i * 1i;

AW N =

return partialSum;

}

The analysis of this fragment is simple. The declarations count for no time. Lines 1 and
4 count for one unit each. Line 3 counts for four units per time executed (two multiplica-
tions, one addition, and one assignment) and is executed N times, for a total of 4N units.
Line 2 has the hidden costs of initializing i, testing i < N, and incrementing i. The total
cost of all these is 1 to initialize, N 4 1 for all the tests, and N for all the increments, which
is 2N + 2. We ignore the costs of calling the function and returning, for a total of 6N + 4.
Thus, we say that this function is O(N).

If we had to perform all this work every time we needed to analyze a program, the
task would quickly become infeasible. Fortunately, since we are giving the answer in terms
of Big-Oh, there are lots of shortcuts that can be taken without affecting the final answer.
For instance, line 3 is obviously an O(1) statement (per execution), so it is silly to count
precisely whether it is two, three, or four units; it does not matter. Line 1 is obviously
insignificant compared with the for loop, so it is silly to waste time here. This leads to
several general rules.

2.4.2 General Rules

Rule 1—FOR loops
The running time of a for loop is at most the running time of the statements inside the
for loop (including tests) times the number of iterations.

Rule 2—Nested loops

Analyze these inside out. The total running time of a statement inside a group of nested
loops is the running time of the statement multiplied by the product of the sizes of all
the loops.

As an example, the following program fragment is O(N?):

for(i =0; i <n; ++i)
for((j =05 J <ng ++j)
++k;

B

Rule 3—Consecutive Statements
These just add (which means that the maximum is the one that counts; see rule 1 on
page 52).

2.4 Running-Time Calculations

As an example, the following program fragment, which has O(N) work followed by O(N?)
work, is also O(N?):

for(i = 0; i <n; ++i)
a[i] = 0;
for(i =05 i <n; ++i)
for(j =05 3 <n; ++j)
a[l il +=aljl+i+3j;

Rule 4—If/Else
For the fragment

if(condition)
S1

else
S2

the running time of an if/else statement is never more than the running time of the
test plus the larger of the running times of S1 and S2.

Clearly, this can be an overestimate in some cases, but it is never an underestimate.

Other rules are obvious, but a basic strategy of analyzing from the inside (or deep-
est part) out works. If there are function calls, these must be analyzed first. If there are
recursive functions, there are several options. If the recursion is really just a thinly veiled
for loop, the analysis is usually trivial. For instance, the following function is really just a
simple loop and is O(N):

Tong factorial(int n)
{
if(n<=1)
return 1;
else
return n * factorial(n -1);

}

This example is really a poor use of recursion. When recursion is properly used, it is
difficult to convert the recursion into a simple loop structure. In this case, the analysis will
involve a recurrence relation that needs to be solved. To see what might happen, consider
the following program, which turns out to be a terrible use of recursion:

long fib(int n)
{

1 if(n<=1)
2 return 1;
else
3 return fib(n - 1) + fib(n -2);

}

At first glance, this seems like a very clever use of recursion. However, if the program
is coded up and run for values of N around 40, it becomes apparent that this program

59

60

Chapter 2 Algorithm Analysis

is terribly inefficient. The analysis is fairly simple. Let T(N) be the running time for the
function call fib(n). If N = 0 or N = 1, then the running time is some constant value,
which is the time to do the test at line 1 and return. We can say that T(0) = T(1) = 1
because constants do not matter. The running time for other values of N is then measured
relative to the running time of the base case. For N > 2, the time to execute the function is
the constant work at line 1 plus the work at line 3. Line 3 consists of an addition and two
function calls. Since the function calls are not simple operations, they must be analyzed by
themselves. The first function call is fib(n-1) and hence, by the definition of T, requires
T(N — 1) units of time. A similar argument shows that the second function call requires
T(N — 2) units of time. The total time required is then T(IN — 1) + T(N — 2) + 2, where the
2 accounts for the work at line 1 plus the addition at line 3. Thus, for N > 2, we have the
following formula for the running time of fib(n):

TN)=TIN—D+T(N—=2)+2

Since fib(n) = fib(n-1) 4+ fib(n-2), it is easy to show by induction that T(N) > fib(n).
In Section 1.2.5, we showed that fib(N) < (5/3)N . A similar calculation shows that (for
N > 4) fib(N) > (3/2)N, and so the running time of this program grows exponentially. This
is about as bad as possible. By keeping a simple array and using a for loop, the running
time can be reduced substantially.

This program is slow because there is a huge amount of redundant work being per-
formed, violating the fourth major rule of recursion (the compound interest rule), which
was presented in Section 1.3. Notice that the first call on line 3, fib(n-1), actually com-
putes fib(n-2) at some point. This information is thrown away and recomputed by the
second call on line 3. The amount of information thrown away compounds recursively
and results in the huge running time. This is perhaps the finest example of the maxim
“Don’t compute anything more than once” and should not scare you away from using
recursion. Throughout this book, we shall see outstanding uses of recursion.

2.4.3 Solutions for the Maximum Subsequence
Sum Problem

We will now present four algorithms to solve the maximum subsequence sum prob-
lem posed earlier. The first algorithm, which merely exhaustively tries all possibilities, is
depicted in Figure 2.5. The indices in the for loop reflect the fact that in C++, arrays begin
at 0 instead of 1. Also, the algorithm does not compute the actual subsequences; additional
code is required to do this.

Convince yourself that this algorithm works (this should not take much convincing).
The running time is O(N?) and is entirely due to lines 13 and 14, which consist of an O(1)
statement buried inside three nested for loops. The loop at line 8 is of size N.

The second loop has size N — i, which could be small but could also be of size N. We
must assume the worst, with the knowledge that this could make the final bound a bit
high. The third loop has size j — i 4 1, which again we must assume is of size N. The total
is O(1 - N -N-N) = O(N>). Line 6 takes only O(1) total, and lines 16 and 17 take only
O(N?) total, since they are easy expressions inside only two loops.

2.4 Running-Time Calculations

1 /**

2 * Cubic maximum contiguous subsequence sum algorithm.
3 */

4 int maxSubSuml(const vector<int> & a)
5 A

6 int maxSum = 0;

7

8 for(int i = 0; i < a.size(); ++i)
9 for(int j = i; j < a.size(); ++j)
10 {

11 int thisSum = 0;

12

13 for(int k = i; k <= j; ++k)
14 thisSum += a[k];

15

16 if(thisSum > maxSum)

17 maxSum = thisSum;

18 }

19

20 return maxSum;

21}

Figure 2.5 Algorithm 1

It turns out that a more precise analysis, taking into account the actual size of these
loops, shows that the answer is O(N?) and that our estimate above was a factor of 6 too
high (which is all right, because constants do not matter). This is generally true in these
kinds of problems. The precise analysis is obtained from the sum Zfi —01 ZJI\ZI Jk:i 1,
which tells how many times line 14 is executed. The sum can be evaluated inside out,
using formulas from Section 1.2.3. In particular, we will use the formulas for the sum of
the first N integers and first N squares. First we have

j
dl=j—it1

k=i
Next we evaluate
N—1

A DN —i
Z(j—i+1)=(N 1+2)(N i)

J=t

This sum is computed by observing that it is just the sum of the first N — i integers. To
complete the calculation, we evaluate

62

Chapter 2 Algorithm Analysis

N—1

Z(—1+1><N—l> i(—1+1><N—z+2>

i=l i=1

N
1., 3 1,
==Y 2_-(Nn+2 i+ (N2 +3N+2)) 1
2;1 <+2>;1+2(+ +);

1NN+ DN +1 3\ NN+1) N?+3N+2
_ NIV + 1) +)—<N+5)(+)+ TINF2,

2 6 2 2
_ N> 43N? 42N
B 6

We can avoid the cubic running time by removing a for loop. This is not always pos-
sible, but in this case there are an awful lot of unnecessary computations present in the
algorithm. The inefﬁciency that the improved algorithm corrects can be seen by noticing
that ZJ Ay = Aj + Zk IAk, so the computation at lines 13 and 14 in algorithm 1 is
unduly expensive. Figure 2.6 shows an improved algorithm. Algorithm 2 is clearly O(N?);
the analysis is even simpler than before.

There is a recursive and relatively complicated O(Nlog N) solution to this problem,
which we now describe. If there didn’t happen to be an O(N) (linear) solution, this would
be an excellent example of the power of recursion. The algorithm uses a “divide-and-
conquer” strategy. The idea is to split the problem into two roughly equal subproblems,

1 /**

2 * Quadratic maximum contiguous subsequence sum algorithm.
3 */

4 int maxSubSum2(const vector<int> & a)
5

6 int maxSum = 0;

7

8 for(int i = 0; i < a.size(); ++i)
9 {

10 int thisSum = 0;

11 for(int j = i; j < a.size(); ++j)
12 {

13 thisSum += a[j];

14

15 if(thisSum > maxSum)

16 maxSum = thisSum;

17 }

18 }

19
20 return maxSum;

21}

Figure 2.6 Algorithm 2

2.4 Running-Time Calculations

which are then solved recursively. This is the “divide” part. The “conquer” stage consists
of patching together the two solutions of the subproblems, and possibly doing a small
amount of additional work, to arrive at a solution for the whole problem.

In our case, the maximum subsequence sum can be in one of three places. Either it
occurs entirely in the left half of the input, or entirely in the right half, or it crosses the
middle and is in both halves. The first two cases can be solved recursively. The last case
can be obtained by finding the largest sum in the first half that includes the last element
in the first half, and the largest sum in the second half that includes the first element in
the second half. These two sums can then be added together. As an example, consider the
following input:

First Half Second Half

4 -3 5 =2 -1 2 6 =2

The maximum subsequence sum for the first half is 6 (elements A; through As) and for
the second half is 8 (elements Ag through A7).

The maximum sum in the first half that includes the last element in the first half is 4
(elements A; through A4), and the maximum sum in the second half that includes the first
element in the second half is 7 (elements As through A7). Thus, the maximum sum that
spans both halves and goes through the middle is 4 + 7 = 11 (elements A; through A7).

We see, then, that among the three ways to form a large maximum subsequence, for
our example, the best way is to include elements from both halves. Thus, the answer is 11.
Figure 2.7 shows an implementation of this strategy.

The code for algorithm 3 deserves some comment. The general form of the call for the
recursive function is to pass the input array along with the left and right borders, which
delimits the portion of the array that is operated upon. A one-line driver program sets this
up by passing the borders 0 and N — 1 along with the array.

Lines 8 to 12 handle the base case. If 1eft == right, there is one element, and it is
the maximum subsequence if the element is nonnegative. The case left > right is not
possible unless N is negative (although minor perturbations in the code could mess this
up). Lines 15 and 16 perform the two recursive calls. We can see that the recursive calls
are always on a smaller problem than the original, although minor perturbations in the
code could destroy this property. Lines 18 to 24 and 26 to 32 calculate the two maxi-
mum sums that touch the center divider. The sum of these two values is the maximum
sum that spans both halves. The routine max3 (not shown) returns the largest of the three
possibilities.

Algorithm 3 clearly requires more effort to code than either of the two previous algo-
rithms. However, shorter code does not always mean better code. As we have seen in the
earlier table showing the running times of the algorithms, this algorithm is considerably
faster than the other two for all but the smallest of input sizes.

The running time is analyzed in much the same way as for the program that computes
the Fibonacci numbers. Let T(N) be the time it takes to solve a maximum subsequence
sum problem of size N. If N = 1, then the program takes some constant amount of time
to execute lines 8 to 12, which we shall call one unit. Thus, T(1) = 1. Otherwise, the

63

64

Chapter 2 Algorithm Analysis

0 N O U AW N =

SR AR AW W W Ww W W W Ww w W N NN NN NN NN DN = = e e e e s e
K W~ OO o~ L h Wh O W~ U h WKN O WO O Ui v WK = O O

45

/**

*
*

*

*/

Recursive maximum contiguous subsequence sum algorithm.
Finds maximum sum in subarray spanning a[left..right].
Does not attempt to maintain actual best sequence.

int maxSumRec(const vector<int> & a, int left, int right)

{

—

/**

*

*

*/

if(left == right) // Base case
if(a[left] >0)
return a[Teft];
else
return 0;

int center = (left + right) / 2;
int maxLeftSum = maxSumRec(a, left, center);
int maxRightSum = maxSumRec(a, center + 1, right);

int maxLeftBorderSum = 0, TeftBorderSum = 0;
for(int i = center; i >= left; --i)
{
leftBorderSum += a[i];
if(leftBorderSum > maxLeftBorderSum)
maxLeftBorderSum = leftBorderSum;

int maxRightBorderSum = 0, rightBorderSum = 0;
for(int j = center + 1; j <= right; ++j)
{
rightBorderSum += a[j 1;
if(rightBorderSum > maxRightBorderSum)
maxRightBorderSum = rightBorderSum;

return max3(maxLeftSum, maxRightSum,
maxLeftBorderSum + maxRightBorderSum);

Driver for divide-and-conquer maximum contiguous
subsequence sum algorithm.

int maxSubSum3(const vector<int> & a)

{

}

return maxSumRec(a, 0, a.size() - 1);

Figure 2.7 Algorithm 3

2.4 Running-Time Calculations

program must perform two recursive calls, the two for loops between lines 19 and 32, and
some small amount of bookkeeping, such as lines 14 and 34. The two for loops combine
to touch every element in the subarray, and there is constant work inside the loops, so the
time expended in lines 19 to 32 is O(N). The code in lines 8 to 14, 18, 26, and 34 is all
a constant amount of work and can thus be ignored compared with O(N). The remainder
of the work is performed in lines 15 and 16. These lines solve two subsequence problems
of size N/2 (assuming N is even). Thus, these lines take T(N/2) units of time each, for a
total of 2T(N/2). The total time for the algorithm then is 2T(N/2) 4+ O(N). This gives the
equations

(1) =1
T(N) = 2T(N/2) + O(N)

To simplify the calculations, we can replace the O(N) term in the equation above with
N; since T(N) will be expressed in Big-Oh notation anyway, this will not affect the answer.
In Chapter 7, we shall see how to solve this equation rigorously. For now, if T(N) =
2T(N/2)+N,and T(1) = 1,then T2) =4 = 2%2, T(4) = 12 = 4% 3, T(8) = 32 = 8x%4,
and T(16) = 80 = 16x5. The pattern that is evident, and can be derived, is thatif N = 2k,
then T(N) = N (k+ 1) = NlogN + N = O(N'logN).

This analysis assumes N is even, since otherwise N/2 is not defined. By the recursive
nature of the analysis, it is really valid only when N is a power of 2, since otherwise we
eventually get a subproblem that is not an even size, and the equation is invalid. When
N is not a power of 2, a somewhat more complicated analysis is required, but the Big-Oh
result remains unchanged.

In future chapters, we will see several clever applications of recursion. Here, we present
a fourth algorithm to find the maximum subsequence sum. This algorithm is simpler to
implement than the recursive algorithm and also is more efficient. It is shown in Figure 2.8.

It should be clear why the time bound is correct, but it takes a little thought to see why
the algorithm actually works. To sketch the logic, note that like algorithms 1 and 2, j is
representing the end of the current sequence, while i is representing the start of the current
sequence. It happens that the use of i can be optimized out of the program if we do not
need to know where the actual best subsequence is, but in designing the algorithm, let’s
pretend that i is needed and that we are trying to improve algorithm 2. One observation
is that if a[i] is negative, then it cannot possibly be the start of the optimal subsequence,
since any subsequence that begins by including a[i] would be improved by beginning
with a[i+1]. Similarly, any negative subsequence cannot possibly be a prefix of the optimal
subsequence (same logic). If, in the inner loop, we detect that the subsequence from a[i]
to a[j] is negative, then we can advance i. The crucial observation is that not only can we
advance i to i+1, but we can also actually advance it all the way to j+1. To see this, let p be
any index between i+1 and j. Any subsequence that starts at index p is not larger than the
corresponding subsequence that starts at index i and includes the subsequence from a[i]
to a[p-1], since the latter subsequence is not negative (j is the first index that causes the
subsequence starting at index i to become negative). Thus, advancing i to j+1 is risk free;
we cannot miss an optimal solution.

This algorithm is typical of many clever algorithms: The running time is obvious,
but the correctness is not. For these algorithms, formal correctness proofs (more formal

65

66

Chapter 2 Algorithm Analysis

1 /**

2 * Linear-time maximum contiguous subsequence sum algorithm.
3 */

4 int maxSubSum4(const vector<int> & a)
5

6 int maxSum = 0, thisSum = 0;

7

8 for(int j = 0; j < a.size(); ++j)
9 {
10 thisSum += a[j];
11
12 if(thisSum > maxSum)
13 maxSum = thisSum;
14 else if(thisSum < 0)
15 thisSum = 0;

16 }
17
18 return maxSum;
19 }

Figure 2.8 Algorithm 4

than the sketch above) are almost always required; even then, many people still are not
convinced. Also, many of these algorithms require trickier programming, leading to longer
development. But when these algorithms work, they run quickly, and we can test much
of the code logic by comparing it with an inefficient (but easily implemented) brute-force
algorithm using small input sizes.

An extra advantage of this algorithm is that it makes only one pass through the data,
and once a[i] is read and processed, it does not need to be remembered. Thus, if the
array is on a disk or is being transmitted over the Internet, it can be read sequentially, and
there is no need to store any part of it in main memory. Furthermore, at any point in time,
the algorithm can correctly give an answer to the subsequence problem for the data it has
already read (the other algorithms do not share this property). Algorithms that can do this
are called online algorithms. An online algorithm that requires only constant space and
runs in linear time is just about as good as possible.

2.4.4 Logarithms in the Running Time

The most confusing aspect of analyzing algorithms probably centers around the logarithm.
We have already seen that some divide-and-conquer algorithms will run in O(NlogN)
time. Besides divide-and-conquer algorithms, the most frequent appearance of logarithms
centers around the following general rule: An algorithm is O(log N) if it takes constant (O(1))
time to cut the problem size by a fraction (which is usually %). On the other hand, if constant
time is required to merely reduce the problem by a constant amount (such as to make the
problem smaller by 1), then the algorithm is O(N).

2.4 Running-Time Calculations

It should be obvious that only special kinds of problems can be O(log N). For instance,
if the input is a list of N numbers, an algorithm must take Q(N) merely to read the input
in. Thus, when we talk about O(log N) algorithms for these kinds of problems, we usually
presume that the input is preread. We provide three examples of logarithmic behavior.

Binary Search
The first example is usually referred to as binary search.

Binary Search
Given an integer X and integers Ag, A1, . ..,An—1, which are presorted and already in
memory, find i such that A; = X, or return i = —1 if X is not in the input.

The obvious solution consists of scanning through the list from left to right and runs
in linear time. However, this algorithm does not take advantage of the fact that the list is
sorted and is thus not likely to be best. A better strategy is to check if X is the middle
element. If so, the answer is at hand. If X is smaller than the middle element, we can apply
the same strategy to the sorted subarray to the left of the middle element; likewise, if X is
larger than the middle element, we look to the right half. (There is also the case of when to
stop.) Figure 2.9 shows the code for binary search (the answer is mid). As usual, the code
reflects C++%5 convention that arrays begin with index 0.

1 /**

2 * Performs the standard binary search using two comparisons per level.
3 * Returns index where item is found or -1 if not found.
4 */

5 template <typename Comparable>

6 int binarySearch(const vector<Comparable> & a, const Comparable & x)
7 A

8 int Tow = 0, high = a.size() - 1;

9

10 while(Tow <= high)

11 {

12 int mid = (Tow + high) / 2;

13

14 if(al mid] <x)

15 Tow = mid + 1;

16 else if(a[mid] > x)

17 high = mid - 1;

18 else

19 return mid; // Found

20 }

21 return NOT_FOUND; // NOT_FOUND is defined as -1
22}

Figure 2.9 Binary search

67

68

Chapter 2 Algorithm Analysis

Clearly, all the work done inside the loop takes O(1) per iteration, so the analysis
requires determining the number of times around the loop. The loop starts with high -
Tow = N — 1 and finishes with high - Tow > —1. Every time through the loop, the value
high - Tow must be at least halved from its previous value; thus, the number of times
around the loop is at most [log(N — 1)] + 2. (As an example, if high - Tow = 128, then
the maximum values of high - low after each iteration are 64, 32, 16, 8,4,2, 1,0, —1.)
Thus, the running time is O(log N). Equivalently, we could write a recursive formula for
the running time, but this kind of brute-force approach is usually unnecessary when you
understand what is really going on and why.

Binary search can be viewed as our first data-structure implementation. It supports
the contains operation in O(logN) time, but all other operations (in particular, insert)
require O(N) time. In applications where the data are static (i.e., insertions and deletions
are not allowed), this could be very useful. The input would then need to be sorted once,
but afterward accesses would be fast. An example is a program that needs to maintain
information about the periodic table of elements (which arises in chemistry and physics).
This table is relatively stable, as new elements are added infrequently. The element names
could be kept sorted. Since there are only about 118 elements, at most eight accesses would
be required to find an element. Performing a sequential search would require many more
accesses.

Euclid’s Algorithm

A second example is Euclid’s algorithm for computing the greatest common divisor. The
greatest common divisor (gcd) of two integers is the largest integer that divides both. Thus,
gcd(50,15) = 5. The algorithm in Figure 2.10 computes gcd(M, N), assuming M > N.
(It N > M, the first iteration of the loop swaps them.)

The algorithm works by continually computing remainders until O is reached. The last
nonzero remainder is the answer. Thus, if M = 1,989 and N = 1,590, then the sequence
of remainders is 399, 393, 6, 3, 0. Therefore, gcd(1989, 1590) = 3. As the example shows,
this is a fast algorithm.

As before, estimating the entire running time of the algorithm depends on determin-
ing how long the sequence of remainders is. Although log N seems like a good answer, it
is not at all obvious that the value of the remainder has to decrease by a constant factor,

I long Tong gcd(Tong long m, long long n)
2

3 while(n !=0)

4 {

5 long lTong rem = m % n;

6 m=n;

7 n = rem;

8 }

9 return m;

10}

Figure 2.10 Euclid’s algorithm

2.4 Running-Time Calculations

since we see that the remainder went from 399 to only 393 in the example. Indeed, the
remainder does not decrease by a constant factor in one iteration. However, we can prove
that after two iterations, the remainder is at most half of its original value. This would
show that the number of iterations is at most 2logN = O(logN) and establish the run-
ning time. This proof is easy, so we include it here. It follows directly from the following
theorem.

Theorem 2.1
IfM > N, then M mod N < M/2.

Proof

There are two cases. If N < M/2, then since the remainder is smaller than N, the
theorem is true for this case. The other case is N > M/2. But then N goes into M once
with a remainder M — N < M/2, proving the theorem.

One might wonder if this is the best bound possible, since 2 log N is about 20 for our
example, and only seven operations were performed. It turns out that the constant can be
improved slightly, to roughly 1.44 logN, in the worst case (which is achievable if M and N
are consecutive Fibonacci numbers). The average-case performance of Euclid’s algorithm
requires pages and pages of highly sophisticated mathematical analysis, and it turns out
that the average number of iterations is about (12 In2InN)/m? + 1.47.

Exponentiation

Our last example in this section deals with raising an integer to a power (which is also an
integer). Numbers that result from exponentiation are generally quite large, so an analysis
works only if we can assume that we have a machine that can store such large integers
(or a compiler that can simulate this). We will count the number of multiplications as the
measurement of running time.

The obvious algorithm to compute XY uses N— 1 multiplications. A recursive algorithm
can do better. N < 1 is the base case of the recursion. Otherwise, if N is even, we have
XN = xN/2. xN/2 and if N is odd, XN = XN-D/2 . x(N=D/2 . %

For instance, to compute X%2 the algorithm does the following calculations, which
involve only nine multiplications:

X3 = (XXX = (X3)2X,X15 — (X7)2X,X31 _ (XIS)ZX’Xéz = 3

The number of multiplications required is clearly at most 2 log N, because at most two
multiplications (if N is odd) are required to halve the problem. Again, a recurrence formula
can be written and solved. Simple intuition obviates the need for a brute-force approach.

Figure 2.11 implements this idea. It is sometimes interesting to see how much the
code can be tweaked without affecting correctness. In Figure 2.11, lines 5 to 6 are actually
unnecessary, because if N is 1, then line 10 does the right thing. Line 10 can also be
rewritten as

10 return pow(x, n - 1) * x;

69

70

Chapter 2 Algorithm Analysis

1 long Tong pow(long-long x, int n)
2

3 if(n==0)

4 return 1;

5 if(n==1)

6 return x;

7 if(isEven(n))

8 return pow(x * x, n /2);
9 else

10 return pow(x * x, n /2) * x;
11 }

Figure 2.11 Efficient exponentiation

without affecting the correctness of the program. Indeed, the program will still run in
O(log N), because the sequence of multiplications is the same as before. However, all of the
following alternatives for line 8 are bad, even though they look correct:

8a return pow(pow(x, 2), n/2);
Sh return pow(pow(x, n /2), 2);
8¢ return pow(x, n /2) * pow(x, n /2);

Both lines 8a and 8b are incorrect because when N is 2, one of the recursive calls to pow
has 2 as the second argument. Thus no progress is made, and an infinite loop results (in
an eventual crash).

Using line 8c affects the efficiency, because there are now two recursive calls of size N/2
instead of only one. An analysis will show that the running time is no longer O(log N). We
leave it as an exercise to the reader to determine the new running time.

2.4.5 Limitations of Worst-Case Analysis

Sometimes the analysis is shown empirically to be an overestimate. If this is the case, then
either the analysis needs to be tightened (usually by a clever observation), or it may be
that the average running time is significantly less than the worst-case running time and
no improvement in the bound is possible. For many complicated algorithms the worst-
case bound is achievable by some bad input but is usually an overestimate in practice.
Unfortunately, for most of these problems, an average-case analysis is extremely complex
(in many cases still unsolved), and a worst-case bound, even though overly pessimistic, is
the best analytical result known.

Summary

This chapter gives some hints on how to analyze the complexity of programs. Unfortu-
nately, it is not a complete guide. Simple programs usually have simple analyses, but this
is not always the case. As an example, later in the text we shall see a sorting algorithm
(Shellsort, Chapter 7) and an algorithm for maintaining disjoint sets (Chapter 8), each of

Exercises

which requires about 20 lines of code. The analysis of Shellsort is still not complete, and the
disjoint set algorithm has an analysis that until recently was extremely difficult and require
pages and pages of intricate calculations. Most of the analyses that we will encounter here
will be simple and involve counting through loops.

An interesting kind of analysis, which we have not touched upon, is lower-bound
analysis. We will see an example of this in Chapter 7, where it is proved that any algorithm
that sorts by using only comparisons requires €2(N log N) comparisons in the worst case.
Lower-bound proofs are generally the most difficult, because they apply not to an algorithm
but to a class of algorithms that solve a problem.

We close by mentioning that some of the algorithms described here have real-life
application. The gcd algorithm and the exponentiation algorithm are both used in cryptog-
raphy. Specifically, a 600-digit number is raised to a large power (usually another 600-digit
number), with only the low 600 or so digits retained after each multiplication. Since the
calculations require dealing with 600-digit numbers, efficiency is obviously important. The
straightforward algorithm for exponentiation would require about 10°%° multiplications,
whereas the algorithm presented requires only about 4,000 in the worst case.

Exercises

2.1 Order the following functions by growth rate: N, VN, N5 N?, NlogN,
NloglogN, Nlog2 N, Nlog(Nz), 2/N, N ON/Z 37 N2 logN, N3. Indicate which
functions grow at the same rate.

2.2 Suppose T1(N) = O(f(N)) and To(N) = O(f(N)). Which of the following are true?
a. T1(N) + To(N) = O(f(N))

b. T1(N) — To(N) = o(f(N))
T1(N)
=0(1)
TH(N)
d. Ti(N) = O(T2(N))
2.3 Which function grows faster: Nlog N or N'T¢/v108N ¢ 5 (2
2.4 Prove that for any constant k, logk N = o(N).

2.5 Find two functions f(N) and g(N) such that neither f(N) = O(g(N)) nor g(N) =
O(f(\N).

2.6 Inarecent court case, a judge cited a city for contempt and ordered a fine of $2 for
the first day. Each subsequent day, until the city followed the judge’s order, the fine
was squared (i.e., the fine progressed as follows: $2, $4, $16, $256, $65,536, .. .).
a. What would be the fine on day N?

b. How many days would it take for the fine to reach D dollars (a Big-Oh answer
will do)?

2.7 For each of the following six program fragments:

a. Give an analysis of the running time (Big-Oh will do).

b. Implement the code in the language of your choice, and give the running time
for several values of N.

c. Compare your analysis with the actual running times.

C.

n

72

Chapter 2

2.8

Algorithm Analysis

(1) sum = 03
for((i =05 1 <nj ++i)
++sum;
(2) sum = 0;

for(i =0; i <n; ++i)
for(j =05 <n; ++j)
++sum;
(3) sum = 0;
for(i =0; i<n; ++i)
for((j =053 <n*n; ++j)
++sum;
(4) sum = 0;
for(1 = 0; 1 <n; ++i)
for(j =05 J <i; ++j)
++sum;
(5) sum = 0;
for(1 =0; i <n; ++i)
for(j =05 J<i*1; ++j)
for(k = 0; k < j; ++k)
++sum;
(6) sum = 0;
for(i =1; 1 <ny ++i)
for(j =15 <1 *i; ++j)
if(j%i==0)
for(k = 0; k < j; ++k)
++sum;

Suppose you need to generate a random permutation of the first N integers. For
example, {4, 3, 1, 5, 2} and {3, 1, 4, 2, 5} are legal permutations, but {5, 4, 1, 2,
1} is not, because one number (1) is duplicated and another (3) is missing. This
routine is often used in simulation of algorithms. We assume the existence of a
random number generator, r, with method randInt(i,j), that generates integers
between i and j with equal probability. Here are three algorithms:

1.

a.

Fill the array a from a[0] to a[N-1] as follows: To fill a[i], generate random
numbers until you get one that is not already in a[0], a[1], ..., a[i-1].

Same as algorithm (1), but keep an extra array called the used array. When
a random number, ran, is first put in the array a, set used[ran] = true. This
means that when filling a[i] with a random number, you can test in one step
to see whether the random number has been used, instead of the (possibly) i
steps in the first algorithm.

Fill the array such that a[i] = i+1. Then

for(i =1; i <n; ++i)
swap(a[i], a[randInt(0, i)]);

Prove that all three algorithms generate only legal permutations and that all
permutations are equally likely.

2.9

2.10

2.11

2.12

2.13

2.14

Exercises

b. Give as accurate (Big-Oh) an analysis as you can of the expected running time of
each algorithm.

c. Write (separate) programs to execute each algorithm 10 times, to get a good
average. Run program (1) for N = 250, 500, 1,000, 2,000; program (2) for
N = 25,000, 50,000, 100,000, 200,000, 400,000, 800,000; and program
(3) for N = 100,000, 200,000, 400,000, 800,000, 1,600,000, 3,200,000,
6,400,000.

d. Compare your analysis with the actual running times.

e. What is the worst-case running time of each algorithm?

Complete the table in Figure 2.2 with estimates for the running times that were
too long to simulate. Interpolate the running times for these algorithms and esti-
mate the time required to compute the maximum subsequence sum of 1 million
numbers. What assumptions have you made?

Determine, for the typical algorithms that you use to perform calculations by hand,
the running time to do the following:

a. Add two N-digit integers.

b. Multiply two N-digit integers.

c. Divide two N-digit integers.

An algorithm takes 0.5 ms for input size 100. How long will it take for input size
500 if the running time is the following (assume low-order terms are negligible)?
a. linear

b. O(NlogN)

c¢. quadratic

d. cubic

An algorithm takes 0.5 ms for input size 100. How large a problem can be solved in
1 min if the running time is the following (assume low-order terms are negligible)?
a. linear

b. O(NlogN)

¢. quadratic

d. cubic

How much time is required to compute f(x) = ZlNzo aix':
a. Using a simple routine to perform exponentiation?
b. Using the routine in Section 2.4.4?

Consider the following algorithm (known as Horners rule) to evaluate f(x) =
Yo aix':

poly = 0;
for(i =

ny i >=0; --i)
poly =

x * poly + a[i];

a. Show how the steps are performed by this algorithm for x = 3, f(x) = 4x* +
8x% +x + 2.

b. Explain why this algorithm works.

c. What is the running time of this algorithm?

73

74 Chapter 2 Algorithm Analysis

2.15 Give an efficient algorithm to determine if there exists an integer i such that A; = i
in an array of integers A} < Ay < A3 < --- < Ay. What is the running time of
your algorithm?

2.16 Write an alternative ged algorithm based on the following observations (arrange so
that a > b):
a. ged(a,b) = 2gcd(a/2,b/2) if a and b are both even.
b. gcd(a,b) = ged(a/2,b) if ais even and b is odd.
c. ged(a,b) = ged(a,b/2) if ais odd and b is even.
d. ged(a,b) = ged((a+b)/2,(a — b)/2) if a and b are both odd.

2.17 Give efficient algorithms (along with running time analyses) to
a. Find the minimum subsequence sum.
*b. Find the minimum positive subsequence sum.
*¢. Find the maximum subsequence product.

2.18 An important problem in numerical analysis is to find a solution to the equation
f(X) = 0 for some arbitrary f. If the function is continuous and has two points low
and high such that f(low) and f(high) have opposite signs, then a root must exist
between low and high and can be found by a binary search. Write a function that
takes as parameters f, low, and high and solves for a zero. What must you do to
ensure termination?

2.19 The maximum contiguous subsequence sum algorithms in the text do not give any
indication of the actual sequence. Modify them so that they return in a single object
the value of the maximum subsequence and the indices of the actual sequence.

2.20 a. Write a program to determine if a positive integer, N, is prime.

b. In terms of N, what is the worst-case running time of your program? (You should
be able to do this in O(+/N).)

c. Let B equal the number of bits in the binary representation of N. What is the
value of B?

d. In terms of B, what is the worst-case running time of your program?

e. Compare the running times to determine if a 20-bit number and a 40-bit
number are prime.

f. Is it more reasonable to give the running time in terms of N or B? Why?

*2.21 The Sieve of Eratosthenes is a method used to compute all primes less than N. We
begin by making a table of integers 2 to N. We find the smallest integer, i, that is
not crossed out, print i, and cross out i, 2i, 3i,.. .. When i > +/N, the algorithm
terminates. What is the running time of this algorithm?

2.22 Show that X% can be computed with only eight multiplications.

2.23 Write the fast exponentiation routine without recursion.

2.24 Give a precise count on the number of multiplications used by the fast exponenti-
ation routine. (Hint: Consider the binary representation of N.)

2.25 Programs A and B are analyzed and found to have worst-case running times no
greater than 150N log, N and N?, respectively. Answer the following questions, if
possible:

Exercises

a. Which program has the better guarantee on the running time for large values of
N (N > 10,000)?

b. Which program has the better guarantee on the running time for small values of
N (N < 100)?

c. Which program will run faster on average for N = 1,000?

d. Is it possible that program B will run faster than program A on all possible
inputs?

2.26 A majority element in an array, A, of size N is an element that appears more than
N/2 times (thus, there is at most one). For example, the array

3,3,4,2,4,4,2,4,4
has a majority element (4), whereas the array
3,3,4,2,4,4,2,4

does not. If there is no majority element, your program should indicate this. Here
is a sketch of an algorithm to solve the problem:

First, a candidate majority element is found (this is the harder part). This candidate is
the only element that could possibly be the majority element. The second step determines
if this candidate is actually the majority. This is just a sequential search through the array.
To find a candidate in the array, A, form a second array, B. Then compare Ay and A;.
If they are equal, add one of these to B; otherwise do nothing. Then compare A3 and As.
Again if they are equal, add one of these to B; otherwise do nothing. Continue in this
fashion until the entire array is read. Then recursively find a candidate for B; this is the
candidate for A (why?).

a. How does the recursion terminate?
*b. How is the case where N is odd handled?
*¢. What is the running time of the algorithm?
d. How can we avoid using an extra array, B?
*e. Write a program to compute the majority element.

2.27 Theinputis an N by N matrix of numbers that is already in memory. Each individ-
ual row is increasing from left to right. Each individual column is increasing from
top to bottom. Give an O(N) worst-case algorithm that decides if a number X is in
the matrix.

2.28 Design efficient algorithms that take an array of positive numbers a, and determine:
a. the maximum value of a[j]+a[i], with j >
b. the maximum value of a[j]-a[i], with j > i
c. the maximum value of a[j]*a[i], with j > 1.
d. the maximum value of a[j]/a[i], with j > i

V

i.

*2.29 Why is it important to assume that integers in our computer model have a fixed
size?

2.30 Consider the word puzzle problem on page 2. Suppose we fix the size of the longest
word to be 10 characters.

75

76

Chapter 2 Algorithm Analysis

231

2.32

2.33

*2.34

a. In terms of R and C, which are the number of rows and columns in the puzzle,
and W, which is the number of words, what are the running times of the
algorithms described in Chapter 1?

b. Suppose the word list is presorted. Show how to use binary search to obtain an
algorithm with significantly better running time.

Suppose that line 15 in the binary search routine had the statement Tow = mid
instead of Tow = mid + 1. Would the routine still work?

Implement the binary search so that only one two-way comparison is performed in
each iteration.

Suppose that lines 15 and 16 in algorithm 3 (Fig. 2.7) are replaced by
15 int maxLeftSum = maxSumRec(a, left, center - 1);

16 int maxRightSum = maxSumRec(a, center, right);

Would the routine still work?

The inner loop of the cubic maximum subsequence sum algorithm performs
N(N+1)(N+2)/6 iterations of the innermost code. The quadratic version performs
N(N + 1)/2 iterations. The linear version performs N iterations. What pattern is
evident? Can you give a combinatoric explanation of this phenomenon?

References

Analysis of the running time of algorithms was first made popular by Knuth in the three-
part series [5], [6], and [7]. Analysis of the gcd algorithm appears in [6]. Another early text
on the subject is [1].

Big-Oh, big-omega, big-theta, and little-oh notation were advocated by Knuth in [8].
There is still no uniform agreement on the matter, especially when it comes to using ®Q).
Many people prefer to use O(), even though it is less expressive. Additionally, O() is still
used in some corners to express a lower bound, when () is called for.

The maximum subsequence sum problem is from [3]. The series of books [2], [3], and
[4] show how to optimize programs for speed.

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

U W

. J. L. Bentley, Writing Efficient Programs, Prentice Hall, Englewood Cliffs, N.J., 1982.

. J. L. Bentley, Programming Pearls, Addison-Wesley, Reading, Mass., 1986.

. J. L. Bentley, More Programming Pearls, Addison-Wesley, Reading, Mass., 1988.

. D. E. Knuth, The Art of Computer Programming, Vol 1: Fundamental Algorithms, 3d ed.,

Addison-Wesley, Reading, Mass., 1997.

[®))

. D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, 3d ed.,

Addison-Wesley, Reading, Mass., 1998.

7. D. E. Knuth, The Art of Computer Programming, Vol 3: Sorting and Searching, 2d ed., Addison-
Wesley, Reading, Mass., 1998.

8. D. E. Knuth, “Big Omicron and Big Omega and Big Theta,” ACM SIGACT News, 8 (1976),
18-23.

. cuapter 3

Lists, Stacks, and Queues

This chapter discusses three of the most simple and basic data structures. Virtually every
significant program will use at least one of these structures explicitly, and a stack is always
implicitly used in a program, whether or not you declare one. Among the highlights of this
chapter, we will . ..

* Introduce the concept of Abstract Data Types (ADTs).
 Show how to efficiently perform operations on lists.
¢ Introduce the stack ADT and its use in implementing recursion.

* Introduce the queue ADT and its use in operating systems and algorithm design.

In this chapter, we provide code that implements a significant subset of two library
classes: vector and 1ist.

3.1 Abstract Data Types (ADTs)

An abstract data type (ADT) is a set of objects together with a set of operations. Abstract
data types are mathematical abstractions; nowhere in an ADT's definition is there any men-
tion of how the set of operations is implemented. Objects such as lists, sets, and graphs,
along with their operations, can be viewed as ADTs, just as integers, reals, and booleans are
data types. Integers, reals, and booleans have operations associated with them, and so do
ADTs. For the set ADT, we might have such operations as add, remove, size, and contains.
Alternatively, we might only want the two operations union and find, which would define a
different ADT on the set.

The C++ class allows for the implementation of ADTs, with appropriate hiding of
implementation details. Thus, any other part of the program that needs to perform an
operation on the ADT can do so by calling the appropriate method. If for some reason
implementation details need to be changed, it should be easy to do so by merely changing
the routines that perform the ADT operations. This change, in a perfect world, would be
completely transparent to the rest of the program.

There is no rule telling us which operations must be supported for each ADT; this is
a design decision. Error handling and tie breaking (where appropriate) are also generally
up to the program designer. The three data structures that we will study in this chapter are
primary examples of ADTs. We will see how each can be implemented in several ways, but

77

78

Chapter 3 Lists, Stacks, and Queues

if they are done correctly, the programs that use them will not necessarily need to know
which implementation was used.

3.2 The List ADT

We will deal with a general list of the form Ag, A1, Az, ..., Ay—1. We say that the size of
this list is N. We will call the special list of size 0 an empty list.

For any list except the empty list, we say that A; follows (or succeeds) Ai_; (i < N)
and that A;_1 precedes A; (i > 0). The first element of the list is Ag, and the last element
is An—1. We will not define the predecessor of Ag or the successor of Ay—1. The position
of element A; in a list is i. Throughout this discussion, we will assume, to simplify matters,
that the elements in the list are integers, but in general, arbitrarily complex elements are
allowed (and easily handled by a class template).

Associated with these “definitions” is a set of operations that we would like to perform
on the List ADT. Some popular operations are printList and makeEmpty, which do the
obvious things; find, which returns the position of the first occurrence of an item; insert
and remove, which generally insert and remove some element from some position in the
list; and findkth, which returns the element in some position (specified as an argument).
If the list is 34, 12, 52, 16, 12, then find(52) might return 2; insert(x,2) might make the
list into 34, 12, x, 52, 16, 12 (if we insert into the position given); and remove (52) might
turn that list into 34, 12, x, 16, 12.

Of course, the interpretation of what is appropriate for a function is entirely up to
the programmer, as is the handling of special cases (for example, what does find(1)
return above?). We could also add operations such as next and previous, which would
take a position as argument and return the position of the successor and predecessor,
respectively.

3.2.1 Simple Array Implementation of Lists

All these instructions can be implemented just by using an array. Although arrays are cre-
ated with a fixed capacity, the vector class, which internally stores an array, allows the array
to grow by doubling its capacity when needed. This solves the most serious problem with
using an array—namely, that historically, to use an array, an estimate of the maximum size
of the list was required. This estimate is no longer needed.

An array implementation allows printList to be carried out in linear time, and the
findKth operation takes constant time, which is as good as can be expected. However,
insertion and deletion are potentially expensive, depending on where the insertions and
deletions occur. In the worst case, inserting into position 0 (in other words, at the front
of the list) requires pushing the entire array down one spot to make room, and deleting
the first element requires shifting all the elements in the list up one spot, so the worst
case for these operations is O(N). On average, half of the list needs to be moved for either
operation, so linear time is still required. On the other hand, if all the operations occur at
the high end of the list, then no elements need to be shifted, and then adding and deleting
take O(1) time.

3.2 The List ADT

There are many situations where the list is built up by insertions at the high end,
and then only array accesses (i.e., findKth operations) occur. In such a case, the array is
a suitable implementation. However, if insertions and deletions occur throughout the list
and, in particular, at the front of the list, then the array is not a good option. The next
section deals with the alternative: the linked list.

3.2.2 Simple Linked Lists

In order to avoid the linear cost of insertion and deletion, we need to ensure that the list
is not stored contiguously, since otherwise entire parts of the list will need to be moved.
Figure 3.1 shows the general idea of a linked list.

The linked list consists of a series of nodes, which are not necessarily adjacent in
memory. Each node contains the element and a link to a node containing its successor. We
call this the next link. The last cell’s next link points to nullptr.

To execute printList() or find(x), we merely start at the first node in the list and
then traverse the list by following the next links. This operation is clearly linear-time, as
in the array implementation; although, the constant is likely to be larger than if an array
implementation were used. The findKth operation is no longer quite as efficient as an
array implementation; findkth(i) takes O(i) time and works by traversing down the list in
the obvious manner. In practice, this bound is pessimistic, because frequently the calls to
findKth are in sorted order (by i). As an example, findKth(2), findKth(3), findKth(4), and
findKth(6) can all be executed in one scan down the list.

The remove method can be executed in one next pointer change. Figure 3.2 shows the
result of deleting the third element in the original list.

The insert method requires obtaining a new node from the system by using a new call
and then executing two next pointer maneuvers. The general idea is shown in Figure 3.3.
The dashed line represents the old pointer.

As we can see, in principle, if we know where a change is to be made, inserting or
removing an item from a linked list does not require moving lots of items, and instead
involves only a constant number of changes to node links.

The special case of adding to the front or removing the first item is thus a constant-
time operation, presuming of course that a link to the front of the linked list is maintained.

Ao A, A, As Ay | +—

Figure 3.1 A linked list

/\\

Ao A |-+ A,

Figure 3.2 Deletion from a linked list

79

Chapter 3 Lists, Stacks, and Queues

Ao A, R A, As Ay | T

Figure 3.3 Insertion into a linked list

e e T

\ first last /

Figure 3.4 A doubly linked list

The special case of adding at the end (i.e., making the new item the last item) can be
constant-time, as long as we maintain a link to the last node. Thus, a typical linked
list keeps links to both ends of the list. Removing the last item is trickier, because we
have to find the next-to-last item, change its next link to nullptr, and then update the
link that maintains the last node. In the classic linked list, where each node stores a
link to its next node, having a link to the last node provides no information about the
next-to-last node.

The obvious idea of maintaining a third link to the next-to-last node doesn’t work,
because it too would need to be updated during a remove. Instead, we have every node
maintain a link to its previous node in the list. This is shown in Figure 3.4 and is known
as a doubly linked list.

3.3 vector and list in the STL

The C++ language includes, in its library, an implementation of common data structures.
This part of the language is popularly known as the Standard Template Library (STL).
The List ADT is one of the data structures implemented in the STL. We will see some
others in Chapters 4 and 5. In general, these data structures are called collections or
containers.

There are two popular implementations of the List ADT. The vector provides a grow-
able array implementation of the List ADT. The advantage of using the vector is that it is
indexable in constant time. The disadvantage is that insertion of new items and removal of
existing items is expensive, unless the changes are made at the end of the vector. The Tist
provides a doubly linked list implementation of the List ADT. The advantage of using the

3.3 vectorand 1ist inthe STL

Tist is that insertion of new items and removal of existing items is cheap, provided that the
position of the changes is known. The disadvantage is that the 1ist is not easily indexable.
Both vector and 1ist are inefficient for searches. Throughout this discussion, Tist refers to
the doubly linked list in the STL, whereas list (typeset without the monospace font) refers
to the more general List ADT.

Both vector and Tist are class templates that are instantiated with the type of items
that they store. Both have several methods in common. The first three methods shown are
actually available for all the STL containers:

e int size() const: returns the number of elements in the container.
* void clear(): removes all elements from the container.

* bool empty() const: returns true if the container contains no elements, and false
otherwise.

Both vector and 1ist support adding and removing from the end of the list in constant
time. Both vector and 1ist support accessing the front item in the list in constant time.
The operations are:

* void push_back(const Object & x): adds x to the end of the list.
* void pop_back(): removes the object at the end of the list.

* const Object & back() const: returns the object at the end of the list (a mutator that
returns a reference is also provided).

* const Object & front() const: returns the object at the front of the list (a mutator that
returns a reference is also provided).

Because a doubly linked list allows efficient changes at the front, but a vector does not,
the following two methods are available only for 1ist:

* void push_front(const Object & x):adds x to the front of the 1ist.

* void pop_front(): removes the object at the front of the Tist.

The vector has its own set of methods that are not part of 1ist. Two methods allow
efficient indexing. The other two methods allow the programmer to view and change the
internal capacity. These methods are:

* Object & operator[] (int idx):returns the object at index idx in the vector, with no
bounds-checking (an accessor that returns a constant reference is also provided).

* Object & at(int idx): returns the object at index idx in the vector, with bounds-
checking (an accessor that returns a constant reference is also provided).

* int capacity() const: returns the internal capacity of the vector. (See Section 3.4 for
more details.)

* void reserve(int newCapacity): sets the new capacity. If a good estimate is available,
it can be used to avoid expansion of the vector. (See Section 3.4 for more details.)

82

Chapter 3 Lists, Stacks, and Queues

3.3.1 Iterators

Some operations on lists, most critically those to insert and remove from the middle
of the list, require the notion of a position. In the STL, a position is represented by a
nested type, iterator. In particular, for a Tist<string>, the position is represented by
the type list<string>::iterator; for a vector<int>, the position is represented by a class
vector<int>::iterator, and so on. In describing some methods, we'll simply use iterator
as a shorthand, but when writing code, we will use the actual nested class name.

Initially, there are three main issues to address: first, how one gets an iterator; sec-
ond, what operations the iterators themselves can perform; third, which List ADT methods
require iterators as parameters.

Getting an lterator
For the first issue, the STL lists (and all other STL containers) define a pair of methods:

* iterator begin(): returns an appropriate iterator representing the first item in the
container.

* iterator end(): returns an appropriate iterator representing the endmarker in the
container (i.e., the position after the last item in the container).

The end method seems a little unusual, because it returns an iterator that is “out-of-
bounds.” To see the idea, consider the following code typically used to print the items in a
vector v prior to the introduction of range-based for loops in C++11:

for(int i = 0; i != v.size(); ++i)
cout << v[i] << endl;

If we were to rewrite this code using iterators, we would see a natural correspondence
with the begin and end methods:

for(vector<int>::iterator itr = v.begin(); itr != v.end(); itr.???)
cout << jtr.??? << endl;

In the loop termination test, both i!=v.size() and itr!=v.end() are intended to test if
the loop counter has become “out-of-bounds.” The code fragment also brings us to the sec-
ond issue, which is that the iterator must have methods associated with it (these unknown
methods are represented by ?7?).

Iterator Methods

Based on the code fragment above, it is obvious that iterators can be compared with != and
==, and likely have copy constructors and operator= defined. Thus, iterators have methods,
and many of the methods use operator overloading. Besides copying, the most commonly
used operations on iterators include the following:

e itr++ and ++itr: advances the iterator itr to the next location. Both the prefix and
postfix forms are allowable.

3.3 vectorand 1ist inthe STL

* *itr: returns a reference to the object stored at iterator itrs location. The reference
returned may or may not be modifiable (we discuss these details shortly).

e itrl==itr2: returns true if iterators itrl and itr2 refer to the same location and false
otherwise.

e itrl!=itr2: returns true if iterators itrl and itr2 refer to a different location and false
otherwise.

With these operators, the code to print would be

for(vector<int>::iterator itr = v.begin(); itr != v.end(); ++itr)
cout << *itr << endl;

The use of operator overloading allows one to access the current item, then advance to
the next item using *itr++. Thus, an alternative to the fragment above is

vector<int>::iterator itr = v.begin();
while(itr !=v.end())
cout << *itr++ << endl;

Container Operations That Require Iterators

For the last issue, the three most popular methods that require iterators are those that add
or remove from the list (either a vector or Tist) at a specified position:

* iterator insert(iterator pos, const Object & x): adds x into the list, prior to the
position given by the iterator pos. This is a constant-time operation for Tist, but not for
vector. The return value is an iterator representing the position of the inserted item.

* iterator erase(iterator pos): removes the object at the position given by the itera-
tor. This is a constant-time operation for Tist, but not for vector. The return value is
the position of the element that followed pos prior to the call. This operation invalidates
pos, which is now stale, since the container item it was viewing has been removed.

* iterator erase(iterator start, iterator end): removes all items beginning at posi-
tion start, up to, but not including end. Observe that the entire list can be erased by
the call c.erase(c.begin(), c.end()).

3.3.2 Example: Using erase on a List

As an example, we provide a routine that removes every other item in a list, starting with
the initial item. Thus if the list contains 6, 5, 1, 4, 2, then after the method is invoked it
will contain 5, 4. We do this by stepping through the list and using the erase method on
every second item. On a Tist, this will be a linear-time routine because each of the calls
to erase takes constant time, but in a vector the entire routine will take quadratic time
because each of the calls to erase is inefficient, using O(N) time. As a result, we would
normally write the code for a 1ist only. However, for experimentation purposes, we write
a general function template that will work with both a Tist or a vector, and then provide

83

84

Chapter 3 Lists, Stacks, and Queues

1 template <typename Container>

2 void removeEveryOtherItem(Container & Ist)
3

4 auto itr = Ist.begin(); // itr is a Container::iterator
5

6 while(itr != Ist.end())

7 {

8 itr = Ist.erase(itr);

9 if(itr !'= 1st.end())

10 ++itr;

11 }

12}

Figure 3.5 Using iterators to remove every other item in a List (either a vector or 1ist).
Efficient for a 1ist, but not for a vector.

timing information. The function template is shown in Figure 3.5. The use of auto at line 4
is a C++11 feature that allows us to avoid the longer type Container::iterator. If we run
the code, passing a Tist<int>, it takes 0.039 sec for a 800,000-item 1ist, and 0.073 sec
for an 1,600,000-item 1ist, and is clearly a linear-time routine, because the running time
increases by the same factor as the input size. When we pass a vector<int>, the routine
takes almost five minutes for an 800,000-item vector and about twenty minutes for an
1,600,000-item vector; the four fold increase in running time when the input increases by
only a factor of two is consistent with quadratic behavior.

3.3.3 const iterators

The result of *itr is not just the value of the item that the iterator is viewing but also the
item itself. This distinction makes the iterators very powerful but also introduces some
complications. To see the benefit, suppose we want to change all the items in a collection
to a specified value. The following routine works for both vector and Tist and runs in
linear time. Its a wonderful example of writing generic, type-independent code.

template <typename Container, typename Object>
void change(Container & c, const Object & newValue)
{
typename Container::iterator itr = c.begin();
while(itr != c.end())
*itr++ = newValue;

}

To see the potential problem, suppose the Container ¢ was passed to a routine using call-
by-constant reference. This means we would expect that no changes would be allowed to
¢, and the compiler would ensure this by not allowing calls to any of ¢’s mutators. Consider
the following code that prints a 1ist of integers but also tries to sneak in a change to the
Tist:

3.3 vectorand 1ist inthe STL

void print(const Tist<int> & Ist, ostream & out = cout)
{
typename Container::iterator itr = Ist.begin();
while(itr != Ist.end())
{
out << *itr << endl;
*itr = 05 // This is fishy!!!
++itr;

}

If this code were legal, then the const-ness of the Tist would be completely meaningless,
because it would be so easily bypassed. The code is not legal and will not compile. The
solution provided by the STL is that every collection contains not only an iterator nested
type but also a const_iterator nested type. The main difference between an iterator and a
const_iterator is that operator* for const_iterator returns a constant reference, and thus
*itr for a const_iterator cannot appear on the left-hand side of an assignment statement.

Further, the compiler will force you to use a const_iterator to traverse a constant
collection. It does so by providing two versions of begin and two versions of end, as follows:

* iterator begin()
e const_iterator begin() const
e iterator end()

e const_iterator end() const

The two versions of begin can be in the same class only because the const-ness of a
method (i.e., whether it is an accessor or mutator) is considered to be part of the signature.
We saw this trick in Section 1.7.2 and we will see it again in Section 3.4, both in the
context of overloading operator[].

If begin is invoked on a nonconstant container, the “mutator” version that returns an
iterator is invoked. However, if begin is invoked on a constant container, what is returned
is a const_iterator, and the return value may not be assigned to an iterator. If you try to
do so, a compiler error is generated. Once itr is a const_iterator, *itr=0 is easily detected
as being illegal.

If you use auto to declare your iterators, the compiler will deduce for you whether
an iterator or const_iterator is substituted; to a large extent, this relieves the program-
mer from having to keep track of the correct iterator type and is precisely one of the
intended uses of auto. Additionally, library classes such as vector and 1ist that provide iter-
ators as described above are compatible with the range-based for loop, as are user-defined
classes.

An additional feature in C++11 allows one to write code that works even if the
Container type does not have begin and end member functions. Non-member free func-
tions begin and end are defined that allow one to use begin(c) in any place where c.begin()
is allowed. Writing generic code using begin(c) instead of c.begin() has the advantage that
it allows the generic code to work on containers that have begin/end as members, as well
as those that do not have begin/end but which can later be augmented with appropriate

85

86

Chapter 3 Lists, Stacks, and Queues

16

template <typename Container>
void print(const Container & c, ostream & out = cout)

{
if(c.empty())
out << "(empty)";
else

{
auto itr = begin(¢); // itr is a Container::const_iterator
out << "[" << *itr++; // Print first item
while(itr != end(c))

out << ", " << Fitrdsg
out << " J" << endl;

}

Figure 3.6 Printing any container

non-member functions. The addition of begin and end as free functions in C++11 is made
possible by the addition of language features auto and decltype, as shown in the code
below.

template<typename Container>
auto begin(Container & c) -> decltype(c.begin())
{

return c.begin();

template<typename Container>
auto begin(const Container & c) -> decltype(c.begin())

{

return c.begin();

}

In this code, the return type of begin is deduced to be the type of c.begin() .
The code in Figure 3.6 makes use of auto to declare the iterator (as in Fig. 3.5) and

uses non-member functions begin and end.

3.4 Implementation of vector

In this section, we provide the implementation of a usable vector class template. The vector
will be a first-class type, meaning that unlike the primitive array in C++, the vector can
be copied, and the memory it uses can be automatically reclaimed (via its destructor). In
Section 1.5.7, we described some important features of C++ primitive arrays:

3.4 Implementation of vector

* The array is simply a pointer variable to a block of memory; the actual array size must
be maintained separately by the programmer.

* The block of memory can be allocated via new[] but then must be freed via delete[].

* The block of memory cannot be resized (but a new, presumably larger block can be
obtained and initialized with the old block, and then the old block can be freed).

To avoid ambiguities with the library class, we will name our class template Vector.
Before examining the Vector code, we outline the main details:

1. The Vector will maintain the primitive array (via a pointer variable to the block of
allocated memory), the array capacity, and the current number of items stored in the
Vector.

2. The Vector will implement the Big-Five to provide deep-copy semantics for the copy
constructor and operator=, and will provide a destructor to reclaim the primitive array.
It will also implement C++11 move semantics.

3. The Vector will provide a resize routine that will change (generally to a larger number)
the size of the Vector and a reserve routine that will change (generally to a larger
number) the capacity of the Vector. The capacity is changed by obtaining a new block
of memory for the primitive array, copying the old block into the new block, and
reclaiming the old block.

4. The Vector will provide an implementation of operator[] (as mentioned in
Section 1.7.2, operator[] is typically implemented with both an accessor and mutator
version).

5. The Vector will provide basic routines, such as size, empty, clear (which are typically
one-liners), back, pop_back, and push_back. The push_back routine will call reserve if the
size and capacity are same.

6. The Vector will provide support for the nested types iterator and const_iterator, and
associated begin and end methods.

Figure 3.7 and Figure 3.8 show the Vector class. Like its STL counterpart, there is
limited error checking. Later we will briefly discuss how error checking can be provided.

As shown on lines 118 to 120, the Vector stores the size, capacity, and primitive array
as its data members. The constructor at lines 7 to 9 allows the user to specify an initial
size, which defaults to zero. It then initializes the data members, with the capacity slightly
larger than the size, so a few push_backs can be performed without changing the capacity.

The copy constructor, shown at lines 11 to 17, makes a new Vector and can then be
used by a casual implementation of operator= that uses the standard idiom of swapping
in a copy. This idiom works only if swapping is done by moving, which itself requires
the implementation of the move constructor and move operator= shown at lines 29 to 44.
Again, these use very standard idioms. Implementation of the copy assignment operator=
using a copy constructor and swap, while simple, is certainly not the most efficient method,
especially in the case where both Vectors have the same size. In that special case, which
can be tested for, it can be more efficient to simply copy each element one by one using
Object’s operator=.

87

88 Chapter 3 Lists, Stacks, and Queues

1 #include <algorithm>
2
3 template <typename Object>
4 class Vector
5
6 pubTic:
7 explicit Vector(int initSize = 0) : theSize{ initSize },
8 theCapacity{ initSize + SPARE_CAPACITY }
9 { objects = new Object[theCapacity]; }
10
11 Vector(const Vector & rhs) : theSize{ rhs.theSize },
12 theCapacity{ rhs.theCapacity }, objects{ nullptr }
13 {
14 objects = new Object[theCapacity 1];
15 for(int k = 0; k < theSize; ++k)
16 objects[k] = rhs.objects[k];
17 }
18
19 Vector & operator= (const Vector & rhs)
20 {
21 Vector copy = rhs;
22 std::swap(*this, copy);
23 return *this;
24 }
25
26 ~Vector()
27 { delete [] objects; }
28
29 Vector(Vector && rhs) : theSize{ rhs.theSize },
30 theCapacity{ rhs.theCapacity }, objects{ rhs.objects }
31 {
32 rhs.objects = nullptr;
33 rhs.theSize = 0;
34 rhs.theCapacity = 0;
35 }
36
37 Vector & operator= (Vector && rhs)
38 {
39 std::swap(theSize, rhs.theSize);
40 std::swap(theCapacity, rhs.theCapacity);
41 std::swap(objects, rhs.objects);
42
43 return *this;
44 }
45

Figure 3.7 vector class (Part 1 of 2)

3.4 Implementation of vector

46 void resize(int newSize)

47 {

48 if(newSize > theCapacity)

49 reserve(newSize * 2);

50 theSize = newSize;

51 }

52

53 void reserve(int newCapacity)

54 {

55 if(newCapacity < theSize)

56 return;

57

58 Object *newArray = new Object[newCapacity];
59 for(int k = 0; k < theSize; ++k)

60 newArray[k] = std::move(objects[k]);
61

62 theCapacity = newCapacity;

63 std::swap(objects, newArray);

64 delete [] newArray;

65 }

Figure 3.7 (continued)

The resize routine is shown at lines 46 to 51. The code simply sets the theSize
data member, after possibly expanding the capacity. Expanding capacity is very expen-
sive. So if the capacity is expanded, it is made twice as large as the size to avoid having
to change the capacity again unless the size increases dramatically (the +1 is used in case
the size is 0). Expanding capacity is done by the reserve routine, shown at lines 53 to
65. It consists of allocation of a new array at line 58, moving the old contents at lines
59 and 60, and the reclaiming of the old array at line 64. As shown at lines 55 and
56, the reserve routine can also be used to shrink the underlying array, but only if the
specified new capacity is at least as large as the size. If it isn't, the reserve request is
ignored.

The two versions of operator[] are trivial (and in fact very similar to the implementa-
tions of operator[] in the matrix class in Section 1.7.2) and are shown in lines 67 to 70.
Error checking is easily added by making sure that index is in the range 0 to size()-1,
inclusive, and throwing an exception if it is not.

A host of short routines, namely, empty, size, capacity, push_back, pop_back, and back,
are implemented in lines 72 to 101. At lines 83 and 90, we see the use of the postfix ++
operator, which uses theSize to index the array and then increases theSize. We saw the
same idiom when discussing iterators: *itr++ uses itr to decide which item to view and
then advances itr. The positioning of the ++ matters: In the prefix ++ operator, *++itr
advances itr and then uses the new itr to decide which item to view, and likewise,
objects[++theSize] would increment theSize and use the new value to index the array
(which is not what we would want). pop_back and back could both benefit from error
checks in which an exception is thrown if the size is 0.

89

20

Chapter 3 Lists, Stacks, and Queues

67 Object & operator[](int index)

68 { return objects[index]; }

69 const Object & operator[](int index) const
70 { return objects[index]; }

71

72 bool empty() const

73 { return size() == 0; }

74 int size() const

75 { return theSize; }

76 int capacity() const

77 { return theCapacity; }

78

79 void push_back(const Object & x)

80 {

81 if(theSize == theCapacity)

82 reserve(2 * theCapacity + 1);
83 objects[theSize++] = x;

84 }

85

86 void push_back(Object && x)

87 {

88 if(theSize == theCapacity)

89 reserve(2 * theCapacity + 1);
90 objects[theSize++] = std::move(x);
91 }

92

93 void pop_back()

94 {

95 --theSize;

96 }

97

98 const Object & back () const

99 {
100 return objects[theSize - 1];
101 }
102
103 typedef Object * iterator;
104 typedef const Object * const_iterator;
105

106 iterator begin()
107 { return &objects[0]; }
108 const_iterator begin() const
109 { return &objects[0]; }

Figure 3.8 vector class (Part 2 of 2)

3.5 Implementation of 1ist

110 iterator end()

111 { return &objects[size()]; }
112 const_iterator end() const

113 { return &objects[size()]; }
114

115 static const int SPARE_CAPACITY = 16;
116

117 private:

118 int theSize;

119 int theCapacity;

120 Object * objects;

121}

Figure 3.8 (continued)

Finally, at lines 103 to 113 we see the declaration of the iterator and const_iterator
nested types and the two begin and two end methods. This code makes use of the fact that
in C++, a pointer variable has all the same operators that we expect for an iterator. Pointer
variables can be copied and compared; the * operator yields the object being pointed at,
and, most peculiarly, when ++ is applied to a pointer variable, the pointer variable then
points at the object that would be stored next sequentially: If the pointer is pointing inside
an array, incrementing the pointer positions it at the next array element. These semantics
for pointers date back to the early 70s with the C programming language, upon which C++
is based. The STL iterator mechanism was designed in part to mimic pointer operations.

Consequently, at lines 103 and 104, we see typedef statements that state the iterator
and const_iterator are simply other names for a pointer variable, and begin and end need
to simply return the memory addresses representing the first array position and the first
invalid array position, respectively.

The correspondence between iterators and pointers for the vector type means that
using a vector instead of the C++ array is likely to carry little overhead. The disadvantage
is that, as written, the code has no error checks. If the iterator itr goes crashing past
the end marker, neither ++itr nor *itr will necessarily signal an error. To fix this problem
would require that the iterator and const_iterator be actual nested class types rather than
simply pointer variables. Using nested class types is much more common and is what we
will see in the List class in Section 3.5.

3.5 Implementation of 1ist

In this section, we provide the implementation of a usable Tist class template. As in the
case of the vector class, our list class will be named List to avoid ambiguities with the
library class.

Recall that the List class will be implemented as a doubly linked list and that we will
need to maintain pointers to both ends of the list. Doing so allows us to maintain constant
time cost per operation, so long as the operation occurs at a known position. The known
position can be at either end or at a position specified by an iterator.

91

92

Chapter 3 Lists, Stacks, and Queues

In considering the design, we will need to provide four classes:

1. The List class itself, which contains links to both ends, the size of the list, and a host
of methods.

2. The Node class, which is likely to be a private nested class. A node contains the data
and pointers to the previous and next nodes, along with appropriate constructors.

3. The const_iterator class, which abstracts the notion of a position, and is a pub-
lic nested class. The const_iterator stores a pointer to “current” node, and provides
implementation of the basic iterator operations, all in the form of overloaded operators
such as =, ==, =, and ++.

5

4. The iterator class, which abstracts the notion of a position, and is a public nested
class. The iterator has the same functionality as const_iterator, except that operator*
returns a reference to the item being viewed, rather than a constant reference to
the item. An important technical issue is that an iterator can be used in any rou-
tine that requires a const_iterator, but not vice versa. In other words, iterator IS-A
const_iterator.

Because the iterator classes store a pointer to the “current node,” and the end marker
is a valid position, it makes sense to create an extra node at the end of the list to represent
the endmarker. Further, we can create an extra node at the front of the list, logically repre-
senting the beginning marker. These extra nodes are sometimes known as sentinel nodes;
specifically, the node at the front is sometimes known as a header node, and the node at
the end is sometimes known as a tail node.

The advantage of using these extra nodes is that they greatly simplify the coding by
removing a host of special cases. For instance, if we do not use a header node, then remov-
ing the first node becomes a special case, because we must reset the list’s link to the first
node during the remove and because the remove algorithm in general needs to access the
node prior to the node being removed (and without a header node, the first node does not
have a node prior to it). Figure 3.9 shows a doubly linked list with header and tail nodes.
Figure 3.10 shows an empty list.

Figure 3.11 and Figure 3.12 show the outline and partial implementation of the
List class.

We can see at line 5 the beginning of the declaration of the private nested Node class.
Rather than using the class keyword, we use struct. In C++, the struct is a relic from the
C programming language. A struct in C++ is essentially a class in which the members
default to public. Recall that in a class, the members default to private. Clearly the struct

e e e T

\ head tail /

Figure 3.9 A doubly linked list with header and tail nodes

3.5 Implementation of 1ist

- -
=t | =

he‘k /tail

Figure 3.10 An empty doubly linked list with header and tail nodes

]

keyword is not needed, but you will often see it and it is commonly used by programmers
to signify a type that contains mostly data that are accessed directly, rather than through
methods. In our case, making the members public in the Node class will not be a problem,
since the Node class is itself private and inaccessible outside of the List class.

At line 9 we see the beginning of the declaration of the public nested const_iterator
class, and at line 12 we see the beginning of the declaration of the public nested iterator
class. The unusual syntax is inheritance, which is a powerful construct not otherwise used
in the book. The inheritance syntax states that iterator has exactly the same functionality
as const_iterator, with possibly some additions, and that iterator is type-compatible with
const_iterator and can be used wherever const_iterator is needed. We'll discuss those
details when we see the actual implementations later.

Lines 80 to 82 contain the data members for List, namely, the pointers to the header
and tail nodes. We also keep track of the size in a data member so that the size method
can be implemented in constant time.

The rest of the List class consists of the constructor, the Big-Five, and a host of meth-
ods. Many of the methods are one-liners. begin and end return appropriate iterators; the
call at line 30 is typical of the implementation, in which we return a constructed iterator
(thus the iterator and const_iterator classes each have a constructor that takes a pointer
to a Node as its parameter).

The clear method at lines 43 to 47 works by repeatedly removing items until the
List is empty. Using this strategy allows clear to avoid getting its hands dirty reclaiming
nodes because the node reclamation is now funneled to pop_front. The methods at lines
48 to 67 all work by cleverly obtaining and using an appropriate iterator. Recall that the
insert method inserts prior to a position, so push_back inserts prior to the endmarker, as
required. In pop_back, note that erase(-end()) creates a temporary iterator corresponding
to the endmarker, retreats the temporary iterator, and uses that iterator to erase. Similar
behavior occurs in back. Note also that in the case of the pop_front and pop_back operations,
we again avoid dealing with node reclamation.

Figure 3.13 shows the Node class, consisting of the stored item, pointers to the previous
and next Node, and a constructor. All the data members are public.

Figure 3.14 shows the const_iterator class, and Figure 3.15 shows the iterator class.
As we mentioned earlier, the syntax at line 39 in Figure 3.15 indicates an advanced feature
known as inheritance and means that iterator IS-A const_iterator. When the iterator
class is written this way, it inherits all the data and methods from const_iterator. It may
then add new data, add new methods, and override (i.e., redefine) existing methods. In
the most general scenario, there is significant syntactical baggage (often resulting in the
keyword virtual appearing in the code).

93

1 template <typename Object>

2 class List

3

4 private:

5 struct Node

6 { /* See Figure 3.13 */ };

7

8 pubTic:

9 class const_iterator

10 { /* See Figure 3.14 */ };
11

12 class iterator : public const iterator
13 { /* See Figure 3.15 */ };
14

15 pubTic:

16 List()

17 { /* See Figure 3.16 */ }
18 List(const List & rhs)

19 { /* See Figure 3.16 */ }
20 ~List()
21 { /* See Figure 3.16 */ }
22 List & operator= (const List & rhs)
23 { /* See Figure 3.16 */ }
24 List(List && rhs)
25 { /* See Figure 3.16 */ }
26 List & operator= (List && rhs)
27 { /* See Figure 3.16 */ }
28
29 iterator begin()
30 { return { head->next }; }
31 const_iterator begin() const
32 { return { head->next }; }
33 iterator end()
34 { return { tail }; }
35 const_iterator end() const
36 { return { tail }; }
37
38 int size() const
39 { return theSize; }
40 bool empty() const
41 { return size() == 0; }
42
43 void clear()
44 {
45 while(lempty())
46 pop_front();
47 }

Figure 3.11 List class (Part 1 of 2)

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Object & front()
{ return *begin(); }
const Object & front() const
{ return *begin(); }
Object & back()
{ return *--end(); }
const Object & back() const
{ return *--end(); }
void push_front(const Object & x)
{ insert(begin(), x); }
void push_front(Object && x)
{ insert(begin(), std::move(x)); }
void push_back(const Object & x)
{ insert(end(), x); }
void push_back(Object && x)
{ insert(end(), std::move(x)); }
void pop_front()
{ erase(begin()); }
void pop_back()
{ erase(--end()); }

iterator insert(iterator itr, const Object & x)
{ /* See Figure 3.18 */ }

iterator insert(iterator itr, Object && x)
{ /* See Figure 3.18 */ }

iterator erase(iterator itr)
{ /* See Figure 3.20 */ }

iterator erase(iterator from, iterator to)
{ /* See Figure 3.20 */ }

private:

int theSize;
Node *head;
Node *tail;

void init()
{ /* See Figure 3.16 */ }

Figure 3.12 List class (Part 2 of 2)

3.5 Implementation of 1ist

95

Chapter 3 Lists, Stacks, and Queues

1 struct Node

2 {

3 Object data;

4 Node *prev;

5 Node *next;

6

7 Node(const Object & d = Object{ }, Node * p = nullptr,
8 Node * n = nullptr)
9 : data{ d }, prev{ p }, next{ n} { }

10

11 Node(Object && d, Node * p = nullptr, Node * n = nullptr)
12 : data{ std::move(d) }, prev{ p }, next{ n} { }

13 }s

Figure 3.13 Nested Node class for List class

However, in our case, we can avoid much of the syntactical baggage because we are
not adding new data, nor are we intending to change the behavior of an existing method.
We are, however, adding some new methods in the iterator class (with very similar signa-
tures to the existing methods in the const_iterator class). As a result, we can avoid using
virtual. Even so, there are quite a few syntax tricks in const_iterator.

At lines 28 and 29, const_iterator stores as its single data member a pointer to the
“current” node. Normally, this would be private, but if it were private, then iterator would
not have access to it. Marking members of const_iterator as protected allows the classes
that inherit from const_iterator to have access to these members, but does not allow other
classes to have access.

At lines 34 and 35 we see the constructor for const_iterator that was used in the List
class implementation of begin and end. We don't want all classes to see this constructor
(iterators are not supposed to be visibly constructed from pointer variables), so it can’t be
public, but we also want the iterator class to be able to see it, so logically this constructor
is made protected. However, this doesn't give List access to the constructor. The solution
is the friend declaration at line 37, which grants the List class access to const_iterators
nonpublic members.

The public methods in const_iterator all use operator overloading. operator==,
operator!=, and operator* are straightforward. At lines 10 to 21 we see the implementation
of operator++. Recall that the prefix and postfix versions of operator++ are completely dif-
ferent in semantics (and precedence), so we need to write separate routines for each form.
They have the same name, so they must have different signatures to be distinguished. C++
requires that we give them different signatures by specifying an empty parameter list for
the prefix form and a single (anonymous) int parameter for the postfix form. Then ++itr
calls the zero-parameter operator++; and itr++ calls the one-parameter operator++. The int
parameter is never used; it is present only to give a different signature. The implementation
suggests that, in many cases where there is a choice between using the prefix or postfix
operator++, the prefix form will be faster than the postfix form.

In the iterator class, the protected constructor at line 64 uses an initialization list
to initialize the inherited current node. We do not have to reimplement operator==

3.5 Implementation of 1ist

1 class const_iterator

2 {

3 pubTic:

4 const_iterator() : current{ nullptr }
5 {1}

6

7 const Object & operator* () const

8 { return retrieve(); }

9

10 const_iterator & operator++ ()

11 {

12 current = current->next;

13 return *this;

14 }

15

16 const_iterator operator++ (int)

17 {

18 const_iterator old = *this;

19 ++(*this);

20 return old;

21 }

22

23 bool operator== (const const_iterator & rhs) const
24 { return current == rhs.current; }
25 bool operator!= (const const_iterator & rhs) const
26 { return !(*this == rhs); }

27

28 protected:

29 Node *current;

30

31 Object & retrieve() const

32 { return current->data; }

33

34 const_iterator(Node *p) : current{ p }
35 {}

36

37 friend class List<Object>;

38 }s

Figure 3.14 Nested const_iterator class for List class

and operator!= because those are inherited unchanged. We do provide a new pair of
operator++ implementations (because of the changed return type) that hide the origi-
nals in the const_iterator, and we provide an accessor/mutator pair for operator*. The
accessor operator*, shown at lines 47 and 48, simply uses the same implementation as in
const_iterator. The accessor is explicitly implemented in iterator because otherwise the
original implementation is hidden by the newly added mutator version.

97

98

Chapter 3 Lists, Stacks, and Queues

39 class iterator : public const_iterator

40 {

41 pubTic:

42 iterator()

43 {}

44

45 Object & operator* ()

46 { return const_iterator::retrieve(); }
47 const Object & operator* () const

48 { return const_iterator::operator*(); }
49

50 iterator & operator++ ()

51 {

52 this->current = this->current->next;
53 return *this;

54 }

55

56 iterator operator++ (int)

57 {

58 iterator old = *this;

59 ++(*this);

60 return old;

61 }

62

63 protected:

64 iterator(Node *p) : const_iterator{ p }
65 {}

66

67 friend class List<Object>;

68 }s

Figure 3.15 Nested iterator class for List class

Figure 3.16 shows the constructor and Big-Five. Because the zero-parameter construc-
tor and copy constructor must both allocate the header and tail nodes, we provide a private
init routine. init creates an empty List. The destructor reclaims the header and tail nodes;
all the other nodes are reclaimed when the destructor invokes clear. Similarly, the copy
constructor is implemented by invoking public methods rather than attempting low-level
pointer manipulations.

Figure 3.17 illustrates how a new node containing x is spliced in between a node
pointed at by p and p.prev. The assignment to the node pointers can be described as
follows:

Node *newNode = new Node{ x, p->prev, p }; // Steps 1 and 2
p->prev->next = newNode; // Step 3
p->prev = newNode; // Step 4

1 List()

2 { init(); }

3

4 ~List()

5 {

6 clear();

7 delete head;

8 delete tail;

9 }

10

11 List(const List & rhs)

12 {

13 init();

14 for(auto & x : rhs)

15 push_back(x);

16 }

17

18 List & operator= (const List & rhs)
19 {
20 List copy = rhs;
21 std::swap(*this, copy);
22 return *this;
23 }
24
25
26 List(List && rhs)
27 : theSize{ rhs.theSize }, head{ rhs.head }, tail{ rhs.tail }
28 {
29 rhs.theSize = 0;
30 rhs.head = nullptr;
31 rhs.tail = nullptr;
32 }
33
34 List & operator= (List && rhs)
35 {
36 std::swap(theSize, rhs.theSize);
37 std::swap(head, rhs.head);
38 std::swap(tail, rhs.tail);
39
40 return *this;
41 }
42
43 void init()
44 {
45 theSize = 0;
46 head = new Node;
47 tail = new Node;
48 head->next = tail;
49 tail->prev = head;
50 }

Figure 3.16 Constructor, Big-Five, and private init routine for List class

100 Chapter 3 Lists, Stacks, and Queues

BN -
e__|PreV A ﬂ -
SN

N :

Figure 3.17 Insertion in a doubly linked list by getting a new node and then changing
pointers in the order indicated

At

Steps 3 and 4 can be combined, yielding only two lines:

Node *newNode = new Node{ x, p->prev, p }; // Steps 1 and 2
p->prev = p->prev->next = newNode; // Steps 3 and 4

But then these two lines can also be combined, yielding:
p->prev = p->prev->next = new Node{ x, p->prev, p };

This makes the insert routine in Figure 3.18 short.
Figure 3.19 shows the logic of removing a node. If p points to the node being removed,
only two pointers change before the node can be reclaimed:

p->prev->next = p->next;
p->next->prev = p->prev;
delete p;

Figure 3.20 shows a pair of erase routines. The first version of erase contains the three
lines of code shown above and the code to return an iterator representing the item after

1 // Insert x before itr.

2 iterator insert(iterator itr, const Object & x)

3 {

4 Node *p = itr.current;

5 theSize++;

6 return { p->prev = p->prev->next = new Node{ x, p->prev, p } };
7 }

8

9 // Insert x before itr.

10 iterator insert(iterator itr, Object && x)

11 {

12 Node *p = itr.current;

13 theSizet++;

14 return { p->prev = p->prev->next

15 = new Node{ std::move(x), p->prev, p } };
16 }

Figure 3.18 insert routine for List class

3.5 Implementation of 1ist

| s 2

p

Figure 3.19 Removing node specified by p from a doubly linked list

1 // Erase item at itr.

2 iterator erase(iterator itr)

3 {

4 Node *p = itr.current;

5 iterator retVal{ p->next };

6 p->prev->next = p->next;

7 p->next->prev = p->prev;

8 delete p;

9 theSize--;

10

11 return retVal;

12 }

13

14 iterator erase(iterator from, iterator to)
15 {

16 for(iterator itr = from; itr != to;)
17 itr = erase(itr);

18

19 return to;

20 }

Figure 3.20 erase routines for List class

the erased element. Like insert, erase must update theSize. The second version of erase
simply uses an iterator to call the first version of erase. Note that we cannot simply use
itr++ in the for loop at line 16 and ignore the return value of erase at line 17. The value
of itr is stale immediately after the call to erase, which is why erase returns an iterator.

In examining the code, we can see a host of errors that can occur and for which no
checks are provided. For instance, iterators passed to erase and insert can be uninitialized
or for the wrong list! Tterators can have ++ or * applied to them when they are already at
the endmarker or are uninitialized.

An uninitialized iterator will have current pointing at nullptr, so that condition is
easily tested. The endmarker’s next pointer points at nullptr, so testing for ++ or * on an
endmarker condition is also easy. However, in order to determine if an iterator passed to
erase or insert is an iterator for the correct list, the iterator must store an additional data
member representing a pointer to the List from which it was constructed.

102 Chapter 3 Lists, Stacks, and Queues

1 protected:

2 const List<Object> *thelList;

3 Node *current;

4

5 const_iterator(const List<Object> & 1st, Node *p)
6 : thelist{ &Ist }, current{ p }

7 {

8 }

9
10 void assertIsValid() const

11 {
12 if(theList == nullptr || current == nullptr || current == thelList->head)
13 throw IteratorOutOfBoundsException{ };
14 }

Figure 3.21 Revised protected section of const_iterator that incorporates ability to
perform additional error checks

We will sketch the basic idea and leave the details as an exercise. In the const_iterator
class, we add a pointer to the List and modify the protected constructor to take the List as
a parameter. We can also add methods that throw an exception if certain assertions aren’t
met. The revised protected section looks something like the code in Figure 3.21. Then all
calls to iterator and const_iterator constructors that formerly took one parameter now
take two, as in the begin method for List:

const_iterator begin() const

{
const_iterator itr{ *this, head };
return ++itr;

}

Then insert can be revised to look something like the code in Figure 3.22. We leave
the details of these modifications as an exercise.

// Insert x before itr.
iterator insert(iterator itr, const Object & x)
{
itr.assertIsValid();
if(itr.thelList != this)
throw IteratorMismatchException{ };

Node *p = itr.current;
theSize++;
return { *this, p->prev = p->prev->next = new Node{ x, p->prev, p } };

— O O 0 N O LW N =

—

}

Figure 3.22 List insert with additional error checks

3.6 The Stack ADT

3.6 The Stack ADT

A stack is a list with the restriction that insertions and deletions can be performed in only
one position, namely, the end of the list, called the top.

3.6.1 Stack Model

The fundamental operations on a stack are push, which is equivalent to an insert, and pop,
which deletes the most recently inserted element. The most recently inserted element can
be examined prior to performing a pop by use of the top routine. A pop or top on an empty
stack is generally considered an error in the stack ADT. On the other hand, running out of
space when performing a push is an implementation limit but not an ADT error.

Stacks are sometimes known as L1Fo (last in, first out) lists. The model depicted in
Figure 3.23 signifies only that pushes are input operations and pops and tops are output.
The usual operations to make empty stacks and test for emptiness are part of the repertoire,
but essentially all that you can do to a stack is push and pop.

Figure 3.24 shows an abstract stack after several operations. The general model is that
there is some element that is at the top of the stack, and it is the only element that is visible.

pop
Stack push

top

Figure 3.23 Stack model: Input to a stack is by push; output is by pop and top

top

Figure 3.24 Stack model: Only the top element is accessible

103

104

Chapter 3 Lists, Stacks, and Queues

3.6.2 Implementation of Stacks

Since a stack is a list, any list implementation will do. Clearly 1ist and vector support stack
operations; 99% of the time they are the most reasonable choice. Occasionally it can be
faster to design a special-purpose implementation. Because stack operations are constant-
time operations, this is unlikely to yield any discernable improvement except under very
unique circumstances.

For these special times, we will give two popular stack implementations. One uses a
linked structure, and the other uses an array, and both simplify the logic in vector and
Tist, so we do not provide code.

Linked List Implementation of Stacks

The first implementation of a stack uses a singly linked list. We perform a push by inserting
at the front of the list. We perform a pop by deleting the element at the front of the list.
A top operation merely examines the element at the front of the list, returning its value.
Sometimes the pop and top operations are combined into one.

Array Implementation of Stacks

An alternative implementation avoids links and is probably the more popular solution. It
uses the back, push_back, and pop_back implementation from vector, so the implementation
is trivial. Associated with each stack is theArray and top0fStack, which is —1 for an empty
stack (this is how an empty stack is initialized). To push some element x onto the stack,
we increment top0fStack and then set theArray[top0fStack] = x. To pop, we set the return
value to theArray[topOfStack] and then decrement topOfStack.

Notice that these operations are performed in not only constant time but very fast con-
stant time. On some machines, pushes and pops (of integers) can be written in one machine
instruction, operating on a register with auto-increment and auto-decrement addressing.
The fact that most modern machines have stack operations as part of the instruction
set enforces the idea that the stack is probably the most fundamental data structure in
computer science, after the array.

3.6.3 Applications

It should come as no surprise that if we restrict the operations allowed on a list, those oper-
ations can be performed very quickly. The big surprise, however, is that the small number
of operations left are so powerful and important. We give three of the many applications
of stacks. The third application gives a deep insight into how programs are organized.

Balancing Symbols
Compilers check your programs for syntax errors, but frequently a lack of one symbol
(such as a missing brace or comment starter) can cause the compiler to spill out a hundred
lines of diagnostics without identifying the real error.

A useful tool in this situation is a program that checks whether everything is balanced.
Thus, every right brace, bracket, and parenthesis must correspond to its left counterpart.

3.6 The Stack ADT

The sequence [()] is legal, but [(]) is wrong. Obviously, it is not worthwhile writing a
huge program for this, but it turns out that it is easy to check these things. For simplicity,
we will just check for balancing of parentheses, brackets, and braces and ignore any other
character that appears.

The simple algorithm uses a stack and is as follows:

Make an empty stack. Read characters until end of file. If the character is an opening
symbol, push it onto the stack. If it is a closing symbol and the stack is empty, report
an error. Otherwise, pop the stack. If the symbol popped is not the corresponding
opening symbol, then report an error. At end of file, if the stack is not empty, report an
error.

You should be able to convince yourself that this algorithm works. It is clearly linear
and actually makes only one pass through the input. It is thus online and quite fast. Extra
work can be done to attempt to decide what to do when an error is reported—such as
identifying the likely cause.

Postfix Expressions

Suppose we have a pocket calculator and would like to compute the cost of a shopping
trip. To do so, we add a list of numbers and multiply the result by 1.06; this computes the
purchase price of some items with local sales tax added. If the items are 4.99, 5.99, and
6.99, then a natural way to enter this would be the sequence

4.99+599+6.99 % 1.06 =

Depending on the calculator, this produces either the intended answer, 19.05, or the sci-
entific answer, 18.39. Most simple four-function calculators will give the first answer, but
many advanced calculators know that multiplication has higher precedence than addition.

On the other hand, some items are taxable and some are not, so if only the first and
last items were actually taxable, then the sequence

4.99 % 1.06 +5.99 + 6.99 % 1.06 =

would give the correct answer (18.69) on a scientific calculator and the wrong answer
(19.37) on a simple calculator. A scientific calculator generally comes with parentheses, so
we can always get the right answer by parenthesizing, but with a simple calculator we need
to remember intermediate results.

A typical evaluation sequence for this example might be to multiply 4.99 and 1.06,
saving this answer as A;. We then add 5.99 and A, saving the result in A;. We multiply
6.99 and 1.06, saving the answer in A,, and finish by adding A; and A;, leaving the final
answer in Aj. We can write this sequence of operations as follows:

4.991.06 * 5.99 4+ 6.99 1.06 * +

This notation is known as postfix, or reverse Polish notation, and is evaluated exactly as
we have described above. The easiest way to do this is to use a stack. When a number is
seen, it is pushed onto the stack; when an operator is seen, the operator is applied to the

105

106 Chapter 3 Lists, Stacks, and Queues

two numbers (symbols) that are popped from the stack, and the result is pushed onto the
stack. For instance, the postfix expression

65234843+ %

is evaluated as follows:
The first four symbols are placed on the stack. The resulting stack is

topOfStack —

AN LD W

Next, a ‘4’ is read, so 3 and 2 are popped from the stack, and their sum, 5, is pushed.

topOfStack — 5

9]

Next, 8 is pushed.

topOfStack —>

AN L L 0

Now a ‘'’ is seen, so 8 and 5 are popped, and 5 % 8 = 40 is pushed.

topOfStack —> 40

3.6 The Stack ADT 107

Next, a ‘4’ is seen, so 40 and 5 are popped, and 5 + 40 = 45 is pushed.

topOfStack —> 45

Now, 3 is pushed.

topOfStack —> 3
45

Next, ‘4" pops 3 and 45 and pushes 45 + 3 = 48.

topOfStack — 48

Finally, a ¢’ is seen and 48 and 6 are popped; the result, 6 % 48 = 288, is pushed.

topOfStack — | 288

The time to evaluate a postfix expression is O(N), because processing each element in
the input consists of stack operations and therefore takes constant time. The algorithm to
do so is very simple. Notice that when an expression is given in postfix notation, there is
no need to know any precedence rules; this is an obvious advantage.

Chapter 3 Lists, Stacks, and Queues

Infix to Postfix Conversion

Not only can a stack be used to evaluate a postfix expression, but we can also use a stack
to convert an expression in standard form (otherwise known as infix) into postfix. We will
concentrate on a small version of the general problem by allowing only the operators +, *,
(,), and insisting on the usual precedence rules. We will further assume that the expression
is legal. Suppose we want to convert the infix expression

a+b*c+(d*e+f)*g

into postfix. A correct answerisa b ¢ * + d e * f + g * +

When an operand is read, it is immediately placed onto the output. Operators are
not immediately output, so they must be saved somewhere. The correct thing to do is to
place operators that have been seen, but not placed on the output, onto the stack. We will
also stack left parentheses when they are encountered. We start with an initially empty
stack.

If we see a right parenthesis, then we pop the stack, writing symbols until we encounter
a (corresponding) left parenthesis, which is popped but not output.

If we see any other symbol (+, *, (), then we pop entries from the stack until we find
an entry of lower priority. One exception is that we never remove a (from the stack except
when processing a). For the purposes of this operation, + has lowest priority and (highest.
When the popping is done, we push the operator onto the stack.

Finally, if we read the end of input, we pop the stack until it is empty, writing symbols
onto the output.

The idea of this algorithm is that when an operator is seen, it is placed on the stack.
The stack represents pending operators. However, some of the operators on the stack that
have high precedence are now known to be completed and should be popped, as they will
no longer be pending. Thus prior to placing the operator on the stack, operators that are
on the stack, and which are to be completed prior to the current operator, are popped.
This is illustrated in the following table:

Stack When Third
Expression Operator Is Processed Action
a*b-c+d - - is completed; + is pushed
a/b+c*d + Nothing is completed; * is pushed
a-b*c/d - * * is completed; / is pushed
a-b*c+d - * * and - are completed; + is pushed

Parentheses simply add an additional complication. We can view a left parenthesis as
a high-precedence operator when it is an input symbol (so that pending operators
remain pending) and a low-precedence operator when it is on the stack (so that it is
not accidentally removed by an operator). Right parentheses are treated as the special
case.

To see how this algorithm performs, we will convert the long infix expression above
into its postfix form. First, the symbol a is read, so it is passed through to the output.

3.6 The Stack ADT

Then +is read and pushed onto the stack. Next b is read and passed through to the output.
The state of affairs at this juncture is as follows:

+ ab
Stack Output

Next, a * is read. The top entry on the operator stack has lower precedence than *, so
nothing is output and * is put on the stack. Next, c is read and output. Thus far, we have

*

+ labc
Stack Output

The next symbol is a +. Checking the stack, we find that we will pop a * and place it on
the output; pop the other +, which is not of lower but equal priority, on the stack; and then
push the +.

+ abc*+
Stack Output

The next symbol read is a (. Being of highest precedence, this is placed on the stack. Then
d is read and output.

(
+ abc*+d
Stack Output

We continue by reading a *. Since open parentheses do not get removed except when a
closed parenthesis is being processed, there is no output. Next, e is read and output.

+ abc*+de
Stack Output

109

Chapter 3 Lists, Stacks, and Queues

The next symbol read is a +. We pop and output * and then push +. Then we read and
output f.

+

(

+ abc*+de*f
Stack Output

Now we read a), so the stack is emptied back to the (. We output a +.

+ abc*+de*f+
Stack Output

We read a * next; it is pushed onto the stack. Then g is read and output.

*
+ abc*+de*f+g
Stack Output

The input is now empty, so we pop and output symbols from the stack until it is empty.

labc*+de*f+g*+
Stack Output

As before, this conversion requires only O(N) time and works in one pass through
the input. We can add subtraction and division to this repertoire by assigning subtraction
and addition equal priority and multiplication and division equal priority. A subtle point
is that the expression a - b - ¢ will be converted to a b - ¢ - and not a b ¢ - -. Our
algorithm does the right thing, because these operators associate from left to right. This
is not necessarily the case in general, since exponentiation associates right to left: prage
28 =256, not 4> = 64. We leave as an exercise the problem of adding exponentiation to
the repertoire of operators.

Function Calls

The algorithm to check balanced symbols suggests a way to implement function calls in
compiled procedural and object-oriented languages. The problem here is that when a call
is made to a new function, all the variables local to the calling routine need to be saved
by the system, since otherwise the new function will overwrite the memory used by the
calling routine’s variables. Furthermore, the current location in the routine must be saved

3.6 The Stack ADT

so that the new function knows where to go after it is done. The variables have generally
been assigned by the compiler to machine registers, and there are certain to be conflicts
(usually all functions get some variables assigned to register #1), especially if recursion is
involved. The reason that this problem is similar to balancing symbols is that a function call
and function return are essentially the same as an open parenthesis and closed parenthesis,
so the same ideas should work.

When there is a function call, all the important information that needs to be saved, such
as register values (corresponding to variable names) and the return address (which can be
obtained from the program counter, which is typically in a register), is saved “on a piece
of paper” in an abstract way and put at the top of a pile. Then the control is transferred
to the new function, which is free to replace the registers with its values. If it makes other
function calls, it follows the same procedure. When the function wants to return, it looks
at the “paper” at the top of the pile and restores all the registers. It then makes the return
jump.

Clearly, all of this work can be done using a stack, and that is exactly what happens in
virtually every programming language that implements recursion. The information saved
is called either an activation record or stack frame. Typically, a slight adjustment is made:
The current environment is represented at the top of the stack. Thus, a return gives the
previous environment (without copying). The stack in a real computer frequently grows
from the high end of your memory partition downward, and on many systems there is no
checking for overflow. There is always the possibility that you will run out of stack space
by having too many simultaneously active functions. Needless to say, running out of stack
space is always a fatal error.

In languages and systems that do not check for stack overflow, programs crash with-
out an explicit explanation. In normal events, you should not run out of stack space;
doing so is usually an indication of runaway recursion (forgetting a base case). On the
other hand, some perfectly legal and seemingly innocuous programs can cause you to run
out of stack space. The routine in Figure 3.25, which prints out a container, is perfectly
legal and actually correct. It properly handles the base case of an empty container, and
the recursion is fine. This program can be proven correct. Unfortunately, if the container

/**
* Print container from start up to but not including end.
*/
template <typename Iterator>
void print(Iterator start, Iterator end, ostream & out = cout)
{

if(start == end)

return;

out << *start++ << endl; // Print and advance start
print(start, end, out);

—_ —
— O O 0 N Y LW N =

—_
(]

}

Figure 3.25 A bad use of recursion: printing a container

112

Chapter 3 Lists, Stacks, and Queues

1 /**

2 * Print container from start up to but not including end.

3 */

4 template <typename Iterator>

5 void print(Iterator start, Iterator end, ostream & out = cout)
6

7 while(true)

8 {

9 if(start == end)

10 return;

11

12 out << *start++ << endl; // Print and advance start
13 }

14}

Figure 3.26 Printing a container without recursion; a compiler might do this (you should
not)

contains 200,000 elements to print, there will be a stack of 200,000 activation records
representing the nested calls of line 11. Activation records are typically large because of
all the information they contain, so this program is likely to run out of stack space. (If
200,000 elements are not enough to make the program crash, replace the number with a
larger one.)

This program is an example of an extremely bad use of recursion known as tail
recursion. Tail recursion refers to a recursive call at the last line. Tail recursion can be
mechanically eliminated by enclosing the body in a while loop and replacing the recursive
call with one assignment per function argument. This simulates the recursive call because
nothing needs to be saved; after the recursive call finishes, there is really no need to know
the saved values. Because of this, we can just go to the top of the function with the val-
ues that would have been used in a recursive call. The function in Figure 3.26 shows the
mechanically improved version generated by this algorithm. Removal of tail recursion is so
simple that some compilers do it automatically. Even so, it is best not to find out that yours
does not.

Recursion can always be completely removed (compilers do so in converting to assem-
bly language), but doing so can be quite tedious. The general strategy requires using a
stack and is worthwhile only if you can manage to put the bare minimum on the stack. We
will not dwell on this further, except to point out that although nonrecursive programs are
certainly generally faster than equivalent recursive programs, the speed advantage rarely
justifies the lack of clarity that results from removing the recursion.

3.7 The Queue ADT

Like stacks, queues are lists. With a queue, however, insertion is done at one end whereas
deletion is performed at the other end.

3.7 The Queue ADT

3.7.1 Queue Model

The basic operations on a queue are enqueue, which inserts an element at the end of the list
(called the rear), and dequeue, which deletes (and returns) the element at the start of the
list (known as the front). Figure 3.27 shows the abstract model of a queue.

3.7.2 Array Implementation of Queues

As with stacks, any list implementation is legal for queues. Like stacks, both the linked list
and array implementations give fast O(1) running times for every operation. The linked
list implementation is straightforward and left as an exercise. We will now discuss an array
implementation of queues.

For each queue data structure, we keep an array, theArray, and the positions front and
back, which represent the ends of the queue. We also keep track of the number of elements
that are actually in the queue, currentSize. The following table shows a queue in some
intermediate state.

512171
T T
front back

The operations should be clear. To enqueue an element x, we increment currentSize
and back, then set theArray[back] = x. To dequeue an element, we set the return value to
theArray[front], decrement currentSize, and then increment front. Other strategies are
possible (this is discussed later). We will comment on checking for errors presently.

There is one potential problem with this implementation. After 10 enqueues, the queue
appears to be full, since back is now at the last array index, and the next enqueue would
be in a nonexistent position. However, there might only be a few elements in the queue,
because several elements may have already been dequeued. Queues, like stacks, frequently
stay small even in the presence of a lot of operations.

The simple solution is that whenever front or back gets to the end of the array, it
is wrapped around to the beginning. The following tables show the queue during some
operations. This is known as a circular array implementation.

dequeue enqueue

Queue

Figure 3.27 Model of a queue

113

Chapter 3 Lists, Stacks, and Queues

Initial state

2 | 4
T 7
front back
After enqueue(1)
1 2| 4
T T
back front
After enqueue(3)

113 2 | 4
T T
back front
After dequeue, which returns 2
1|3 2 | 4

T T
back front
After dequeue, which returns 4
1|3 2 | 4
T
front back
After dequeue, which returns 1
1|3 2| 4

T
back
front

3.7 The Queue ADT

After dequeue, which returns 3
and makes the queue empty

113 2 | 4
T 7
back front

The extra code required to implement the wraparound is minimal (although it probably
doubles the running time). If incrementing either back or front causes it to go past the array,
the value is reset to the first position in the array.

Some programmers use different ways of representing the front and back of a queue.
For instance, some do not use an entry to keep track of the size, because they rely on
the base case that when the queue is empty, back = front-1. The size is computed
implicitly by comparing back and front. This is a very tricky way to go, because there
are some special cases, so be very careful if you need to modify code written this way.
If the currentSize is not maintained as an explicit data member, then the queue is full
when there are theArray.capacity()-1 elements, since only theArray.capacity() different
sizes can be differentiated and one of these is 0. Pick any style you like and make sure
that all your routines are consistent. Since there are a few options for implementation, it
is probably worth a comment or two in the code if you don’t use the currentSize data
member.

In applications where you are sure that the number of enqueues is not larger than the
capacity of the queue, the wraparound is not necessary. As with stacks, dequeues are rarely
performed unless the calling routines are certain that the queue is not empty. Thus error
checks are frequently skipped for this operation, except in critical code. This is generally
not justifiable, because the time savings that you are likely to achieve are minimal.

3.7.3 Applications of Queues

There are many algorithms that use queues to give efficient running times. Several of these
are found in graph theory, and we will discuss them in Chapter 9. For now, we will give
some simple examples of queue usage.

When jobs are submitted to a printer, they are arranged in order of arrival. Thus,
essentially, jobs sent to a printer are placed on a queue.!

Virtually every real-life line is (supposed to be) a queue. For instance, lines at ticket
counters are queues, because service is first-come first-served.

Another example concerns computer networks. There are many network setups of
personal computers in which the disk is attached to one machine, known as the file server.
Users on other machines are given access to files on a first-come first-served basis, so the
data structure is a queue.

L'We say essentially because jobs can be killed. This amounts to a deletion from the middle of the queue,
which is a violation of the strict definition.

115

116

Chapter 3 Lists, Stacks, and Queues

Further examples include the following:

* Calls to large companies are generally placed on a queue when all operators are busy.

* In large universities, where resources are limited, students must sign a waiting list if
all computers are occupied. The student who has been at a computer the longest is
forced off first, and the student who has been waiting the longest is the next user to be
allowed on.

A whole branch of mathematics known as queuing theory deals with computing,
probabilistically, how long users expect to wait on a line, how long the line gets, and other
such questions. The answer depends on how frequently users arrive to the line and how
long it takes to process a user once the user is served. Both of these parameters are given as
probability distribution functions. In simple cases, an answer can be computed analytically.
An example of an easy case would be a phone line with one operator. If the operator is busy,
callers are placed on a waiting line (up to some maximum limit). This problem is important
for businesses, because studies have shown that people are quick to hang up the phone.

If there are k operators, then this problem is much more difficult to solve. Problems
that are difficult to solve analytically are often solved by a simulation. In our case, we
would need to use a queue to perform the simulation. If k is large, we also need other data
structures to do this efficiently. We shall see how to do this simulation in Chapter 6. We
could then run the simulation for several values of k and choose the minimum k that gives
a reasonable waiting time.

Additional uses for queues abound, and as with stacks, it is staggering that such a
simple data structure can be so important.

Summary

This chapter describes the concept of ADTs and illustrates the concept with three of the
most common abstract data types. The primary objective is to separate the implementation
of the ADTs from their function. The program must know what the operations do, but it is
actually better off not knowing how it is done.

Lists, stacks, and queues are perhaps the three fundamental data structures in all of
computer science, and their use is documented through a host of examples. In particular,
we saw how stacks are used to keep track of function calls and how recursion is actually
implemented. This is important to understand, not just because it makes procedural lan-
guages possible, but because knowing how recursion is implemented removes a good deal
of the mystery that surrounds its use. Although recursion is very powerful, it is not an
entirely free operation; misuse and abuse of recursion can result in programs crashing.

Exercises

3.1 You are given a list, L, and another list, P, containing integers sorted in ascending
order. The operation printLots(L,P) will print the elements in L that are in positions
specified by P. For instance, if P = 1, 3,4, 6, the elements in positions 1, 3, 4, and 6
in L are printed. Write the procedure printLots(L,P). You may use only the public
STL container operations. What is the running time of your procedure?

3.2

33

3.4

3.5

3.6

3.7
3.8
3.9

3.10

3.11

3.12
3.13

Exercises

Swap two adjacent elements by adjusting only the links (and not the data) using
a. singly linked lists
b. doubly linked lists

Implement the STL find routine that returns the iterator containing the first occur-
rence of x in the range that begins at start and extends up to but not including end.
If x is not found, end is returned. This is a nonclass (global function) with signature

template <typename Iterator, typename Object>
iterator find(Iterator start, Iterator end, const Object & x);

Given two sorted lists, L1 and L;, write a procedure to compute L} N L, using only
the basic list operations.

Given two sorted lists, L and L;, write a procedure to compute L} U L, using only
the basic list operations.

The Josephus problem is the following game: N people, numbered 1 to N, are sitting
in a circle. Starting at person 1, a hot potato is passed. After M passes, the person
holding the hot potato is eliminated, the circle closes ranks, and the game con-
tinues with the person who was sitting after the eliminated person picking up the
hot potato. The last remaining person wins. Thus, if M = 0 and N = 5, players
are eliminated in order, and player 5 wins. If M = 1 and N = 5, the order of

elimination is 2, 4, 1, 5.

a. Write a program to solve the Josephus problem for general values of M and N.
Try to make your program as efficient as possible. Make sure you dispose of
cells.

b. What is the running time of your program?

c. If M = 1, what is the running time of your program? How is the actual speed
affected by the delete routine for large values of N (N > 100,000)?

Modify the Vector class to add bounds checks for indexing.
Add insert and erase to the Vector class.

According to the C++ standard, for the vector, a call to push_back, pop_back, insert,
or erase invalidates (potentially makes stale) all iterators viewing the vector. Why?

Modify the Vector class to provide stringent iterator checking by making itera-
tors class types rather than pointer variables. The hardest part is dealing with stale
iterators, as described in Exercise 3.9.

Assume that a singly linked list is implemented with a header node, but no tail
node, and that it maintains only a pointer to the header node. Write a class that
includes methods to

a. return the size of the linked list

b. print the linked list

c. test if a value x is contained in the linked list

d. add a value x if it is not already contained in the linked list

e. remove a value x if it is contained in the linked list

Repeat Exercise 3.11, maintaining the singly linked list in sorted order.

Add support for operator- to the List iterator classes.

117

Chapter 3 Lists, Stacks, and Queues

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

Looking ahead in an STL iterator requires an application of operator++, which in
turn advances the iterator. In some cases looking at the next item in the list, without
advancing to it, may be preferable. Write the member function with the declaration

const_iterator operator+(int k) const;

to facilitate this in a general case. The binary operator+ returns an iterator that
corresponds to k positions ahead of current.

Add the splice operation to the List class. The method declaration
void splice(iterator position, List<T> & Ist);

removes all the items from 1st, placing them prior to position in List *this. Tst
and *this must be different lists. Your routine must run in constant time.

Add reverse iterators to the STL List class implementation. Define reverse_iterator
and const_reverse_iterator. Add the methods rbegin and rend to return appro-
priate reverse iterators representing the position prior to the endmarker and the
position that is the header node. Reverse iterators internally reverse the meaning of
the ++ and -- operators. You should be able to print a list L in reverse by using the
code

List<Object>::reverse iterator itr = L.rbegin();
while(itr != L.rend())
cout << *itr++ << endl;

Modify the List class to provide stringent iterator checking by using the ideas
suggested at the end of Section 3.5.

When an erase method is applied to a Tist, it invalidates any iterator that is
referencing the removed node. Such an iterator is called stale. Describe an efficient
algorithm that guarantees that any operation on a stale iterator acts as though the
iterator’s current is nullptr. Note that there may be many stale iterators. You must
explain which classes need to be rewritten in order to implement your algorithm.

Rewrite the List class without using header and tail nodes and describe the
differences between the class and the class provided in Section 3.5.

An alternative to the deletion strategy we have given is to use lazy deletion. To
delete an element, we merely mark it deleted (using an extra bit field). The number
of deleted and nondeleted elements in the list is kept as part of the data structure. If
there are as many deleted elements as nondeleted elements, we traverse the entire
list, performing the standard deletion algorithm on all marked nodes.

a. List the advantages and disadvantages of lazy deletion.

b. Write routines to implement the standard linked list operations using lazy

deletion.

Write a program to check for balancing symbols in the following languages:
a. Pascal (begin/end, (), [1, {}).
b. C++(/* %/, (0, [1, {}).
*¢. Explain how to print out an error message that is likely to reflect the probable
cause.

3.22
3.23

3.24

3.25

*3.26
3.27

3.28

3.29

3.30

331

3.32

3.33

3.34

Exercises

Write a program to evaluate a postfix expression.

a.

b.

C.

Write a program to convert an infix expression that includes (,), +, -, *, and /
to postfix.

Add the exponentiation operator to your repertoire.

Write a program to convert a postfix expression to infix.

Write routines to implement two stacks using only one array. Your stack routines
should not declare an overflow unless every slot in the array is used.

*a.

*b.

Propose a data structure that supports the stack push and pop operations and a
third operation findMin, which returns the smallest element in the data structure,
all in O(1) worst-case time.

Prove that if we add the fourth operation deleteMin which finds and removes the
smallest element, then at least one of the operations must take Q(log N) time.
(This requires reading Chapter 7.)

Show how to implement three stacks in one array.

If the recursive routine in Section 2.4 used to compute Fibonacci numbers is run
for N = 50, is stack space likely to run out? Why or why not?

A deque is a data structure consisting of a list of items on which the following
operations are possible:

push(x): Insert item x on the front end of the deque.
pop(): Remove the front item from the deque and return it.
inject(x): Insert item x on the rear end of the deque.

eject(): Remove the rear item from the deque and return it.

Write routines to support the deque that take O(1) time per operation.

Write an algorithm for printing a singly linked list in reverse, using only constant
extra space. This instruction implies that you cannot use recursion but you may
assume that your algorithm is a list member function. Can such an algorithm be
written if the routine is a constant member function?

a.

Write an array implementation of self-adjusting lists. In a self-adjusting list, all
insertions are performed at the front. A self-adjusting list adds a find operation,
and when an element is accessed by a find, it is moved to the front of the list
without changing the relative order of the other items.

b. Write a linked list implementation of self-adjusting lists.

Suppose each element has a fixed probability, p;, of being accessed. Show that
the elements with highest access probability are expected to be close to the front.

Efficiently implement a stack class using a singly linked list, with no header or tail
nodes.

Efficiently implement a queue class using a singly linked list, with no header or tail
nodes.

Efficiently implement a queue class using a circular array. You may use a vector
(rather than a primitive array) as the underlying array structure.

A linked list contains a cycle if, starting from some node p, following a sufficient
number of next links brings us back to node p. p does not have to be the first node

119

120 Chapter 3 Lists, Stacks, and Queues

in the list. Assume that you are given a linked list that contains N nodes; however,
the value of N is unknown.
a. Design an O(N) algorithm to determine if the list contains a cycle. You may use
O(N) extra space.
*b. Repeat part (a), but use only O(1) extra space. (Hint: Use two iterators that are
initially at the start of the list but advance at different speeds.)

3.35 One way to implement a queue is to use a circular linked list. In a circular linked
list, the last node’s next pointer points at the first node. Assume the list does not
contain a header and that we can maintain, at most, one iterator corresponding to
a node in the list. For which of the following representations can all basic queue
operations be performed in constant worst-case time? Justify your answers.

a. Maintain an iterator that corresponds to the first item in the list.
b. Maintain an iterator that corresponds to the last item in the list.

3.36 Suppose we have a pointer to a node in a singly linked list that is guaranteed not
to be the last node in the list. We do not have pointers to any other nodes (except
by following links). Describe an O(1) algorithm that logically removes the value
stored in such a node from the linked list, maintaining the integrity of the linked
list. (Hint: Involve the next node.)

3.37 Suppose that a singly linked list is implemented with both a header and a tail node.
Describe constant-time algorithms to
a. insert item x before position p (given by an iterator)
b. remove the item stored at position p (given by an iterator)

. cuarter 4

Trees

For large amounts of input, the linear access time of linked lists is prohibitive. In this
chapter, we look at a simple data structure for which the average running time of most oper-
ations is O(log N). We also sketch a conceptually simple modification to this data structure
that guarantees the above time bound in the worst case and discuss a second modifica-
tion that essentially gives an O(log N) running time per operation for a long sequence of
instructions.

The data structure that we are referring to is known as a binary search tree. The binary
search tree is the basis for the implementation of two library collections classes, set and
map, which are used in many applications. Trees in general are very useful abstractions in
computer science, so we will discuss their use in other, more general applications. In this
chapter, we will . ..

* See how trees are used to implement the file system of several popular operating
systems.

* See how trees can be used to evaluate arithmetic expressions.

» Show how to use trees to support searching operations in O(log N) average time and
how to refine these ideas to obtain O(log N) worst-case bounds. We will also see how
to implement these operations when the data are stored on a disk.

* Discuss and use the set and map classes.

4.1 Preliminaries

A tree can be defined in several ways. One natural way to define a tree is recursively. A tree
is a collection of nodes. The collection can be empty; otherwise, a tree consists of a dis-
tinguished node, r, called the root, and zero or more nonempty (sub)trees T, Ta,. .., Ty,
each of whose roots are connected by a directed edge from r.

The root of each subtree is said to be a child of r, and r is the parent of each subtree
root. Figure 4.1 shows a typical tree using the recursive definition.

From the recursive definition, we find that a tree is a collection of N nodes, one of
which is the root, and N — 1 edges. That there are N — 1 edges follows from the fact that
each edge connects some node to its parent, and every node except the root has one parent
(see Fig. 4.2).

121

122

Chapter4 Trees

Figure 4.2 A tree

In the tree of Figure 4.2, the root is A. Node F has A as a parent and K, L, and M
as children. Each node may have an arbitrary number of children, possibly zero. Nodes
with no children are known as leaves; the leaves in the tree above are B, C, H, I, P Q, K,
L, M, and N. Nodes with the same parent are siblings; thus, K, L, and M are all siblings.
Grandparent and grandchild relations can be defined in a similar manner.

A path from node nj to ny, is defined as a sequence of nodes ni,ny, . .., ny such that n;
is the parent of ni41 for 1 < i < k. The length of this path is the number of edges on the
path, namely, k — 1. There is a path of length zero from every node to itself. Notice that in
a tree there is exactly one path from the root to each node.

For any node n;, the depth of n; is the length of the unique path from the root to n;.
Thus, the root is at depth 0. The height of n; is the length of the longest path from n; to a
leaf. Thus all leaves are at height 0. The height of a tree is equal to the height of the root.
For the tree in Figure 4.2, E is at depth 1 and height 2; F is at depth 1 and height 1; the
height of the tree is 3. The depth of a tree is equal to the depth of the deepest leaf; this is
always equal to the height of the tree.

If there is a path from n; to ny, then nj is an ancestor of n, and n; is a descendant of
ny. lf n1 # ny, then ny is a proper ancestor of ny and n; is a proper descendant of n;.

4.1.1 Implementation of Trees

One way to implement a tree would be to have in each node, besides its data, a link to each
child of the node. However, since the number of children per node can vary so greatly and
is not known in advance, it might be infeasible to make the children direct links in the data

4.1 Preliminaries

struct TreeNode

1
2

3 Object element;

4 TreeNode *firstChild;
5 TreeNode *nextSibling;
6

1

Figure 4.3 Node declarations for trees

(D) E) LF)
O > Z’E iF; @\®
Figure 4.4 First child/next sibling representation of the tree shown in Figure 4.2

structure, because there would be too much wasted space. The solution is simple: Keep
the children of each node in a linked list of tree nodes. The declaration in Figure 4.3 is
typical.

Figure 4.4 shows how a tree might be represented in this implementation. Horizontal
arrows that point downward are firstChild links. Arrows that go left to right are
nextSibling links. Null links are not drawn, because there are too many.

In the tree of Figure 4.4, node E has both a link to a sibling (F) and a link to a child
(I, while some nodes have neither.

4.1.2 Tree Traversals with an Application

There are many applications for trees. One of the popular uses is the directory structure in
many common operating systems, including unix and pos. Figure 4.5 is a typical directory
in the unix file system.

The root of this directory is /usr. (The asterisk next to the name indicates that
fusr is itself a directory.) /usr has three children, mark, alex, and bill, which are them-
selves directories. Thus, /usr contains three directories and no regular files. The filename
lusr/mark/book/ch1.r is obtained by following the leftmost child three times. Each / after the
first indicates an edge; the result is the full pathname. This hierarchical file system is very
popular because it allows users to organize their data logically. Furthermore, two files in
different directories can share the same name, because they must have different paths from
the root and thus have different pathnames. A directory in the unix file system is just a file
with a list of all its children, so the directories are structured almost exactly in accordance

123

124

Chapter4 Trees

/usr*
mark* alex* bill*
book* course* junk ju‘nk work* course*
chlor ch2r ch3ur cop3530* C0p3‘212*
/\
fall* spr sum* fall* fall*

| | e

syl.r sylL.r syl.r grades progl.r prog2.r prog2.r progl.r grades

Figure 4.5 unix directory

void FileSystem::1istA11(int depth = 0) const
{
printName(depth); // Print the name of the object
if(isDirectory())
for each file ¢ in this directory (for each child)
c.TistA11(depth + 1);

AW N =

}

Figure 4.6 Pseudocode to list a directory in a hierarchical file system

with the type declaration above.! Indeed, on some versions of UNIx, if the normal com-
mand to print a file is applied to a directory, then the names of the files in the directory can
be seen in the output (along with other non-ascu information).

Suppose we would like to list the names of all of the files in the directory. Our output
format will be that files that are depth d; will have their names indented by d; tabs. Our
algorithm is given in Figure 4.6 as pseudocode.

The recursive function 1istA11 needs to be started with a depth of O to signify no
indenting for the root. This depth is an internal bookkeeping variable, and is hardly a
parameter that a calling routine should be expected to know about. Thus, the default value
of 0 is provided for depth.

The logic of the algorithm is simple to follow. The name of the file object is printed out
with the appropriate number of tabs. If the entry is a directory, then we process all children
recursively, one by one. These children are one level deeper, and thus need to be indented
an extra space. The output is in Figure 4.7.

This traversal strategy is known as a preorder traversal. In a preorder traversal, work
at a node is performed before (pre) its children are processed. When this program is run,
it is clear that line 1 is executed exactly once per node, since each name is output once.
Since line 1 is executed at most once per node, line 2 must also be executed once per

! Each directory in the UNIX file system also has one entry that points to itself and another entry that points
to the parent of the directory. Thus, technically, the UNix file system is not a tree, but is treelike.

4.1 Preliminaries

Jusr
mark
book
chl.r
ch2.r
ch3.r
course
cop3530
fall
syl.r
spr
syl.r
sum
syl.r
junk
alex
junk
bill
work
course
cop3212
fall
grades
progl.r
prog2.r
fall
prog2.r
progl.r
grades

Figure 4.7 The (preorder) directory listing

node. Furthermore, line 4 can be executed at most once for each child of each node. But
the number of children is exactly one less than the number of nodes. Finally, the for loop
iterates once per execution of line 4 plus once each time the loop ends. Thus, the total
amount of work is constant per node. If there are N file names to be output, then the
running time is O(N).

Another common method of traversing a tree is the postorder traversal. In a postorder
traversal, the work at a node is performed after (post) its children are evaluated. As an
example, Figure 4.8 represents the same directory structure as before, with the numbers in
parentheses representing the number of disk blocks taken up by each file.

Since the directories are themselves files, they have sizes too. Suppose we would like to
calculate the total number of blocks used by all the files in the tree. The most natural way
to do this would be to find the number of blocks contained in the subdirectories /usr/mark
(30), /usr/alex (9), and /usr/bill (32). The total number of blocks is then the total in the

125

126

Chapter4 Trees

fusr*(1)
mark*(1) alex*(1) bill*(1)
book*(1) course*(1) junk (6) junk‘ (8) work*(1) course*(1)
chl.r(3) ch2.r(2) ch3.r(4) cop3530%(1) cop3212%(1)
fall*(1) spr*(1) sum*(1) fall*(1) fall*(1)

syl.r(1) sylLr(5) syl.r(2) grades(3) progl.r(4) prog2.r(1) prog2.r(2) progl.r(7) grades(9)
y y y g prog prog prog prog g

Figure 4.8 unix directory with file sizes obtained via postorder traversal

int FileSystem::size() const

{
int totalSize = sizeOfThisFile();

if(isDirectory())
for each file ¢ in this directory (for each child)
totalSize += c.size();

return totalSize;

}

Figure 4.9 Pseudocode to calculate the size of a directory

subdirectories (71) plus the one block used by /usr, for a total of 72. The pseudocode
method size in Figure 4.9 implements this strategy.

If the current object is not a directory, then size merely returns the number of blocks
it uses in the current object. Otherwise, the number of blocks used by the directory is
added to the number of blocks (recursively) found in all the children. To see the difference
between the postorder traversal strategy and the preorder traversal strategy, Figure 4.10
shows how the size of each directory or file is produced by the algorithm.

4.2 Binary Trees

A binary tree is a tree in which no node can have more than two children.

Figure 4.11 shows that a binary tree consists of a root and two subtrees, T; and Tg,
both of which could possibly be empty.

A property of a binary tree that is sometimes important is that the depth of an average
binary tree is considerably smaller than N. An analysis shows that the average depth is
O(+/N), and that for a special type of binary tree, namely the binary search tree, the average
value of the depth is O(logN). Unfortunately, the depth can be as large as N — 1, as the
example in Figure 4.12 shows.

4.2 Binary Trees 127

chl.r 3

ch2.r 2

ch3.r 4

book 10
syl.r 1

fall 2

syl.r 5

spr 6

syl.r 2

sum 3

cop3530 12

course 13
junk 6
mark 30
junk 8
alex 9
work 1
grades 3

progl.r 4

prog2.r 1

fall 9

prog2.r 2

progl.r 7

grades 9

fall 19

cop3212 29

course 30
bill 32
Jusr 72

Figure 4.10 Trace of the size function

T, Ty

Figure 4.11 Generic binary tree

128

Chapter4 Trees

Figure 4.12 Worst-case binary tree

4.2.1 Implementation

Because a binary tree node has at most two children, we can keep direct links to them. The
declaration of tree nodes is similar in structure to that for doubly linked lists, in that a node
is a structure consisting of the element information plus two pointers (Teft and right) to
other nodes (see Fig. 4.13).

We could draw the binary trees using the rectangular boxes that are customary for
linked lists, but trees are generally drawn as circles connected by lines, because they
are actually graphs. We also do not explicitly draw nullptr links when referring to trees,
because every binary tree with N nodes would require N + 1 nullptr links.

Binary trees have many important uses not associated with searching. One of the
principal uses of binary trees is in the area of compiler design, which we will now explore.

4.2.2 An Example: Expression Trees

Figure 4.14 shows an example of an expression tree. The leaves of an expression tree are
operands, such as constants or variable names, and the other nodes contain operators.
This particular tree happens to be binary, because all the operators are binary, and although
this is the simplest case, it is possible for nodes to have more than two children. It is also
possible for a node to have only one child, as is the case with the unary minus operator.
We can evaluate an expression tree, T, by applying the operator at the root to the values

struct BinaryNode

{

Object element; // The data in the node
BinaryNode *1eft; // Left child
BinaryNode *right; // Right child

}s

Figure 4.13 Binary tree node class (pseudocode)

4.2 Binary Trees

Figure 4.14 Expression tree for (a + b = ¢) + ((d x e + f) * g)

obtained by recursively evaluating the left and right subtrees. In our example, the left
subtree evaluates to a + (b * c) and the right subtree evaluates to ((d * e) + f) * g. The
entire tree therefore represents (a + (b * ¢)) + (((d * e) + f) * g).

We can produce an (overly parenthesized) infix expression by recursively producing a
parenthesized left expression, then printing out the operator at the root, and finally recur-
sively producing a parenthesized right expression. This general strategy (left, node, right)
is known as an inorder traversal; it is easy to remember because of the type of expression
it produces.

An alternate traversal strategy is to recursively print out the left subtree, the right sub-
tree, and then the operator. If we apply this strategy to our tree above, the outputisa b ¢
+de f+g*+ which is easily seen to be the postfix representation of Section 3.6.3.
This traversal strategy is generally known as a postorder traversal. We have seen this
traversal strategy earlier in Section 4.1.

A third traversal strategy is to print out the operator first and then recursively print
out the left and right subtrees. The resulting expression, + + a * b ¢ * + * d e f g, is the
less useful prefix notation, and the traversal strategy is a preorder traversal, which we have
also seen earlier in Section 4.1. We will return to these traversal strategies later in the
chapter.

Constructing an Expression Tree

We now give an algorithm to convert a postfix expression into an expression tree. Since we
already have an algorithm to convert infix to postfix, we can generate expression trees from
the two common types of input. The method we describe strongly resembles the postfix
evaluation algorithm of Section 3.6.3. We read our expression one symbol at a time. If the
symbol is an operand, we create a one-node tree and push a pointer to it onto a stack. If
the symbol is an operator, we pop (pointers) to two trees T and T, from the stack (T
is popped first) and form a new tree whose root is the operator and whose left and right
children point to T, and Ty, respectively. A pointer to this new tree is then pushed onto
the stack.

As an example, suppose the input is

ab+cde+ **

129

130 Chapter4 Trees

The first two symbols are operands, so we create one-node trees and push pointers to

them onto a stack.2

Next, a + is read, so two pointers to trees are popped, a new tree is formed, and a pointer
to it is pushed onto the stack.

Next, ¢, d, and e are read, and for each a one-node tree is created and a pointer to the
corresponding tree is pushed onto the stack.

RN

Now a + is read, so two trees are merged.

2 For convenience, we will have the stack grow from left to right in the diagrams.

4.2 Binary Trees

(+) +
e @ d e

Continuing, a * is read, so we pop two tree pointers and form a new tree with a * as root.

Finally, the last symbol is read, two trees are merged, and a pointer to the final tree is left
on the stack.

131

132

Chapter4 Trees

4.3 The Search Tree ADT—Binary
Search Trees

An important application of binary trees is their use in searching. Let us assume that each
node in the tree stores an item. In our examples, we will assume, for simplicity, that these
are integers, although arbitrarily complex items are easily handled in C++. We will also
assume that all the items are distinct, and we will deal with duplicates later.

The property that makes a binary tree into a binary search tree is that for every node,
X, in the tree, the values of all the items in its left subtree are smaller than the item in X,
and the values of all the items in its right subtree are larger than the item in X. Notice that
this implies that all the elements in the tree can be ordered in some consistent manner. In
Figure 4.15, the tree on the left is a binary search tree, but the tree on the right is not. The
tree on the right has a node with item 7 in the left subtree of a node with item 6 (which
happens to be the root).

We now give brief descriptions of the operations that are usually performed on binary
search trees. Note that because of the recursive definition of trees, it is common to write
these routines recursively. Because the average depth of a binary search tree turns out to be
O(log N), we generally do not need to worry about running out of stack space.

Figure 4.16 shows the interface for the BinarySearchTree class template. There are sev-
eral things worth noticing. Searching is based on the < operator that must be defined for the
particular Comparable type. Specifically, item x matches y if both x<y and y<x are false. This
allows Comparable to be a complex type (such as an employee record), with a comparison
function defined on only part of the type (such as the social security number data mem-
ber or salary). Section 1.6.3 illustrates the general technique of designing a class that can
be used as a Comparable. An alternative, described in Section 4.3.1, is to allow a function
object.

The data member is a pointer to the root node; this pointer is nullptr for empty
trees. The public member functions use the general technique of calling private recursive
functions. An example of how this is done for contains, insert, and remove is shown in
Figure 4.17.

Figure 4.15 Two binary trees (only the left tree is a search tree)

1 template <typename Comparable>

2 class BinarySearchTree

3

4 public:

5 BinarySearchTree();

6 BinarySearchTree(const BinarySearchTree & rhs);
7 BinarySearchTree(BinarySearchTree && rhs);

8 ~BinarySearchTree();

9

10 const Comparable & findMin() const;

11 const Comparable & findMax() const;

12 bool contains(const Comparable & x) const;

13 bool isEmpty() const;

14 void printTree(ostream & out = cout) const;

15

16 void makeEmpty();

17 void insert(const Comparable & x);

18 void insert(Comparable && x);

19 void remove(const Comparable & x);

20

21 BinarySearchTree & operator=(const BinarySearchTree & rhs);
22 BinarySearchTree & operator=(BinarySearchTree && rhs);

23

24 private:

25 struct BinaryNode

26 {

27 Comparable element;

28 BinaryNode *left;

29 BinaryNode *right;

30

31 BinaryNode(const Comparable & theElement, BinaryNode *1t, BinaryNode *rt)
32 : element{ theElement }, Teft{ 1t }, right{ rt } { }
33

34 BinaryNode(Comparable && theElement, BinaryNode *1t, BinaryNode *rt)
35 : element{ std::move(theElement) }, left{ 1t }, right{ rt } { }
36 bs

37

38 BinaryNode *root;

39

40 void insert(const Comparable & x, BinaryNode * & t);

41 void insert(Comparable && x, BinaryNode * & t);

42 void remove(const Comparable & x, BinaryNode * & t);

43 BinaryNode * findMin(BinaryNode *t) const;

44 BinaryNode * findMax(BinaryNode *t) const;

45 bool contains(const Comparable & x, BinaryNode *t) const;
46 void makeEmpty(BinaryNode * & t);

47 void printTree(BinaryNode *t, ostream & out) const;

48 BinaryNode * clone(BinaryNode *t) const;

49

Figure 4.16 Binary search tree class skeleton

134

Chapter4 Trees

1 /**
2 * Returns true if x is found in the tree.
3 */
4 bool contains(const Comparable & x) const
5
6 return contains(x, root);
7 1
8
9 Jx*
10 * Insert x into the tree; duplicates are ignored.
11 */
12 void insert(const Comparable & x)
13
14 insert(x, root);
15}
16
17 /**
18 * Remove x from the tree. Nothing is done if x is not found.
19 */
20 void remove(const Comparable & x)
21 {
22 remove(x, root);
23}

Figure 4.17 [llustration of public member function calling private recursive member
function

Several of the private member functions use the technique of passing a pointer variable
using call-by-reference. This allows the public member functions to pass a pointer to the
root to the private recursive member functions. The recursive functions can then change
the value of the root so that the root points to another node. We will describe the technique
in more detail when we examine the code for insert.

We can now describe some of the private methods.

4.3.1 contains

This operation requires returning true if there is a node in tree T that has item X, or false
if there is no such node. The structure of the tree makes this simple. If T is empty, then we
can just return false. Otherwise, if the item stored at T is X, we can return true. Otherwise,
we make a recursive call on a subtree of T, either left or right, depending on the relation-
ship of X to the item stored in T. The code in Figure 4.18 is an implementation of this
strategy.

4.3 The Search Tree ADT—Binary Search Trees

1 /**

2 * Internal method to test if an item is in a subtree.
3 * x is item to search for.

4 * t is the node that roots the subtree.

5 */

6 bool contains(const Comparable & x, BinaryNode *t) const
7 A

8 if(t == nullptr)

9 return false;
10 else if(x < t->element)
11 return contains(x, t->left);
12 else if(t->element < x)
13 return contains(x, t->right);
14 else
15 return true; // Match
16}

Figure 4.18 contains operation for binary search trees

Notice the order of the tests. It is crucial that the test for an empty tree be performed
first, since otherwise, we would generate a run time error attempting to access a data
member through a nullptr pointer. The remaining tests are arranged with the least likely
case last. Also note that both recursive calls are actually tail recursions and can be easily
removed with a while loop. The use of tail recursion is justifiable here because the sim-
plicity of algorithmic expression compensates for the decrease in speed, and the amount of
stack space used is expected to be only O(log N).

Figure 4.19 shows the trivial changes required to use a function object rather than
requiring that the items be Comparable. This mimics the idioms in Section 1.6.4.

4.3.2 findMin and findMax

These private routines return a pointer to the node containing the smallest and largest
elements in the tree, respectively. To perform a findMin, start at the root and go left as long
as there is a left child. The stopping point is the smallest element. The findMax routine is
the same, except that branching is to the right child.

Many programmers do not bother using recursion. We will code the routines both
ways by doing findMin recursively and findMax nonrecursively (see Figs. 4.20 and 4.21).

Notice how we carefully handle the degenerate case of an empty tree. Although this is
always important to do, it is especially crucial in recursive programs. Also notice that it is
safe to change t in findMax, since we are only working with a copy of a pointer. Always be
extremely careful, however, because a statement such as t->right = t->right->right will
make changes.

135

136

Chapter4 Trees

1 template <typename Object, typename Comparator=less<Object>>
2 class BinarySearchTree
3
4 pubTlic:
5
6 // Same methods, with Object replacing Comparable
7
8 private:
9
10 BinaryNode *root;
11 Comparator isLessThan;
12
13 // Same methods, with Object replacing Comparable
14
15 /**
16 * Internal method to test if an item is in a subtree.
17 * x is item to search for.
18 * t is the node that roots the subtree.
19 */
20 bool contains(const Object & x, BinaryNode *t) const
21 {
22 if(t == nullptr)
23 return false;
24 else if(isLessThan(x, t->element))
25 return contains(x, t->left);
26 else if(isLessThan(t->element, x))
27 return contains(x, t->right);
28 else
29 return true; // Match
30 }
31}

Figure 4.19 Illustrates use of a function object to implement binary search tree

4.3.3 insert

The insertion routine is conceptually simple. To insert X into tree T, proceed down the tree
as you would with a contains. If X is found, do nothing. Otherwise, insert X at the last spot
on the path traversed. Figure 4.22 shows what happens. To insert 5, we traverse the tree as
though a contains were occurring. At the node with item 4, we need to go right, but there
is no subtree, so 5 is not in the tree, and this is the correct spot to place 5.

Duplicates can be handled by keeping an extra field in the node record indicating
the frequency of occurrence. This adds some extra space to the entire tree but is better
than putting duplicates in the tree (which tends to make the tree very deep). Of course,

4.3 The Search Tree ADT—Binary Search Trees

/**
* Internal method to find the smallest item in a subtree t.
* Return node containing the smallest item.
*/
BinaryNode * findMin(BinaryNode *t) const
{
if(t == nullptr)
return nullptr;
if(t->left == nullptr)
return t;
return findMin(t->left);

—_ —
— O O 0 N LW N =

—_
[\]

}

Figure 4.20 Recursive implementation of findMin for binary search trees

l /**

2 * Internal method to find the largest item in a subtree t.
3 * Return node containing the Targest item.
4 */

5 BinaryNode * findMax(BinaryNode *t) const
6 |

7 if(t !=nullptr)

8 while(t->right !'= nullptr)

9 t = t->right;

10 return t;

11}

Figure 4.21 Nonrecursive implementation of findMax for binary search trees

Figure 4.22 Binary search trees before and after inserting 5

137

138

Chapter4 Trees

this strategy does not work if the key that guides the < operator is only part of a larger
structure. If that is the case, then we can keep all of the structures that have the same key
in an auxiliary data structure, such as a list or another search tree.

Figure 4.23 shows the code for the insertion routine. Lines 12 and 14 recursively insert
and attach x into the appropriate subtree. Notice that in the recursive routine, the only time
that t changes is when a new leaf is created. When this happens, it means that the recursive
routine has been called from some other node, p, which is to be the leaf’s parent. The call

1 /**

2 * Internal method to insert into a subtree.

3 * x is the item to insert.

4 * t is the node that roots the subtree.

5 * Set the new root of the subtree.

6 */

7 void insert(const Comparable & x, BinaryNode * & t)
8

9 if(t == nullptr)

10 t = new BinaryNode{ x, nullptr, nullptr };
11 else if(x < t->element)

12 insert(x, t->left);

13 else if(t->element < x)

14 insert(x, t->right);

15 else

16 ; // Duplicate; do nothing

17}

18

19 /**
20 * Internal method to insert into a subtree.
21 * x is the item to insert by moving.
22 * t is the node that roots the subtree.
23 * Set the new root of the subtree.
24 */
25 void insert(Comparable && x, BinaryNode * & t)
26 |
27 if(t == nullptr)
28 t = new BinaryNode{ std::move(x), nullptr, nullptr };
29 else if(x < t->element)
30 insert(std::move(x), t->left);
31 else if(t->element < x)
32 insert(std::move(x), t->right);
33 else
34 ; // Duplicate; do nothing
35 1}

Figure 4.23 Insertion into a binary search tree

4.3 The Search Tree ADT—Binary Search Trees

will be insert(x,p->1eft) or insert(x,p->right). Either way, t is now a reference to either
p->left or p->right, meaning that p->left or p->right will be changed to point at the new
node. All in all, a slick maneuver.

4.3.4 remove

As is common with many data structures, the hardest operation is deletion. Once we have
found the node to be deleted, we need to consider several possibilities.

If the node is a leaf, it can be deleted immediately. If the node has one child, the node
can be deleted after its parent adjusts a link to bypass the node (we will draw the link
directions explicitly for clarity). See Figure 4.24.

The complicated case deals with a node with two children. The general strategy is to
replace the data of this node with the smallest data of the right subtree (which is easily
found) and recursively delete that node (which is now empty). Because the smallest node
in the right subtree cannot have a left child, the second remove is an easy one. Figure 4.25
shows an initial tree and the result of a deletion. The node to be deleted is the left child of
the root; the key value is 2. It is replaced with the smallest data in its right subtree (3), and
then that node is deleted as before.

The code in Figure 4.26 performs deletion. It is inefficient because it makes two passes
down the tree to find and delete the smallest node in the right subtree when this is appro-
priate. It is easy to remove this inefficiency by writing a special removeMin method, and we
have left it in only for simplicity.

If the number of deletions is expected to be small, then a popular strategy to use is
lazy deletion: When an element is to be deleted, it is left in the tree and merely marked
as being deleted. This is especially popular if duplicate items are present, because then the
data member that keeps count of the frequency of appearance can be decremented. If the
number of real nodes in the tree is the same as the number of “deleted” nodes, then the
depth of the tree is only expected to go up by a small constant (why?), so there is a very
small time penalty associated with lazy deletion. Also, if a deleted item is reinserted, the
overhead of allocating a new cell is avoided.

Figure 4.24 Deletion of a node (4) with one child, before and after

139

140 Chapter4 Trees

Figure 4.25 Deletion of a node (2) with two children, before and after

1 /**

2 * Internal method to remove from a subtree.

3 * x is the item to remove.

4 * t is the node that roots the subtree.

5 * Set the new root of the subtree.

6 */

7 void remove(const Comparable & x, BinaryNode * & t)
8

9 if(t == nullptr)

10 return; // Item not found; do nothing

11 if(x < t->element)

12 remove(x, t->left);

13 else if(t->element < x)

14 remove(x, t->right);

15 else if(t->left != nullptr && t->right != nullptr) // Two children
16 {

17 t->element = findMin(t->right)->element;

18 remove(t->element, t->right);

19 }
20 else
21 {
22 BinaryNode *oldNode = t;
23 t = (t->left != nullptr) ? t->left : t->right;
24 delete oldNode;
25 }
26}

Figure 4.26 Deletion routine for binary search trees

4.3 The Search Tree ADT—Binary Search Trees

4.3.5 Destructor and Copy Constructor

As usual, the destructor calls makeEmpty. The public makeEmpty (not shown) simply calls the
private recursive version. As shown in Figure 4.27, after recursively processing t’s children,
a call to delete is made for t. Thus all nodes are recursively reclaimed. Notice that at the
end, t, and thus root, is changed to point at nullptr. The copy constructor, shown in
Figure 4.28, follows the usual procedure, first initializing root to nul1ptr and then making
a copy of rhs. We use a very slick recursive function named clone to do all the dirty work.

4.3.6 Average-Case Analysis

Intuitively, we expect that all of the operations described in this section, except makeEmpty
and copying, should take O(log N) time, because in constant time we descend a level in the
tree, thus operating on a tree that is now roughly half as large. Indeed, the running time of
all the operations (except makeEmpty and copying) is O(d), where d is the depth of the node
containing the accessed item (in the case of remove, this may be the replacement node in
the two-child case).

We prove in this section that the average depth over all nodes in a tree is O(logN) on
the assumption that all insertion sequences are equally likely.

The sum of the depths of all nodes in a tree is known as the internal path length.
We will now calculate the average internal path length of a binary search tree, where the
average is taken over all possible insertion sequences into binary search trees.

l /**

2 * Destructor for the tree

3 */

4 ~BinarySearchTree()

5

6 makeEmpty ();

7}

8 /**

9 * Internal method to make subtree empty.
10 */

11 void makeEmpty(BinaryNode * & t)
12

13 if(t != nullptr)

14 {

15 makeEmpty (t->left);

16 makeEmpty(t->right);

17 delete t;

18 }

19 t = nullptr;

20 '}

Figure 4.27 Destructor and recursive makeEmpty member function

141

142

Chapter4 Trees

1 /**

2 * Copy constructor

3 */

4 BinarySearchTree(const BinarySearchTree & rhs) : root{ nullptr }
5

6 root = clone(rhs.root);

7}

8

9 /**

10 * Internal method to clone subtree.

11 */

12 BinaryNode * clone(BinaryNode *t) const

13 {

14 if(t == nullptr)

15 return nullptr;

16 else

17 return new BinaryNode{ t->element, clone(t->left), clone(t->right) };
18 '}

Figure 4.28 Copy constructor and recursive clone member function

Let D(N) be the internal path length for some tree T of N nodes. D(1) = 0. An N-node
tree consists of an i-node left subtree and an (N — i — 1)-node right subtree, plus a root at
depth zero for 0 < i < N. D(i) is the internal path length of the left subtree with respect to
its root. In the main tree, all these nodes are one level deeper. The same holds for the right
subtree. Thus, we get the recurrence

DIN)=D@H+DN—-i—1)+N—-1

If all subtree sizes are equally likely, which is true for binary search trees (since the subtree
size depends only on the relative rank of the first element inserted into the tree), but not
binary trees, then the average value of both D(i) and DIN —i — 1) is (1/N) Zji_ol D(j).
This yields

5 N—1
pIN) = ;:ZOD(J) +N-1

This recurrence will be encountered and solved in Chapter 7, obtaining an average value of
D(N) = O(NlogN). Thus, the expected depth of any node is O(log N). As an example, the
randomly generated 500-node tree shown in Figure 4.29 has nodes at expected depth 9.98.

It is tempting to say immediately that this result implies that the average running time
of all the operations discussed in the previous section is O(log N), but this is not entirely
true. The reason for this is that because of deletions, it is not clear that all binary search
trees are equally likely. In particular, the deletion algorithm described above favors making
the left subtrees deeper than the right, because we are always replacing a deleted node
with a node from the right subtree. The exact effect of this strategy is still unknown, but

4.3 The Search Tree ADT—Binary Search Trees

=1 AN
Q‘M

= >

|

Figure 4.29 A randomly generated binary search tree

it seems only to be a theoretical novelty. It has been shown that if we alternate insertions
and deletions ®(N?) times, then the trees will have an expected depth of OK/N). After
a quarter-million random insert/remove pairs, the tree that was somewhat right-heavy in
Figure 4.29 looks decidedly unbalanced (average depth = 12.51) in Figure 4.30.

We could try to eliminate the problem by randomly choosing between the smallest
element in the right subtree and the largest in the left when replacing the deleted element.
This apparently eliminates the bias and should keep the trees balanced, but nobody has

gu"’

Figure 4.30 Binary search tree after ®(N?) insert/remove pairs

143

144

Chapter4 Trees

actually proved this. In any event, this phenomenon appears to be mostly a theoretical
novelty, because the effect does not show up at all for small trees, and, stranger still, if
o(N?) insert/remove pairs are used, then the tree seems to gain balance!

The main point of this discussion is that deciding what “average” means is gener-
ally extremely difficult and can require assumptions that may or may not be valid. In the
absence of deletions, or when lazy deletion is used, we can conclude that the average
running times of the operations above are O(log N). Except for strange cases like the one
discussed above, this result is very consistent with observed behavior.

If the input comes into a tree presorted, then a series of inserts will take quadratic
time and give a very expensive implementation of a linked list, since the tree will consist
only of nodes with no left children. One solution to the problem is to insist on an extra
structural condition called balance: No node is allowed to get too deep.

There are quite a few general algorithms to implement balanced trees. Most are quite
a bit more complicated than a standard binary search tree, and all take longer on average
for updates. They do, however, provide protection against the embarrassingly simple cases.
Below, we will sketch one of the oldest forms of balanced search trees, the AVL tree.

A second method is to forgo the balance condition and allow the tree to be arbitrarily
deep, but after every operation, a restructuring rule is applied that tends to make future
operations efficient. These types of data structures are generally classified as self-adjusting.
In the case of a binary search tree, we can no longer guarantee an O(log N) bound on any
single operation but can show that any sequence of M operations takes total time O(M log N)
in the worst case. This is generally sufficient protection against a bad worst case. The
data structure we will discuss is known as a splay tree; its analysis is fairly intricate and is
discussed in Chapter 11.

4.4 AVL Trees

An AVL (Adelson-Velskii and Landis) tree is a binary search tree with a balance condition.
The balance condition must be easy to maintain, and it ensures that the depth of the tree
is O(log N). The simplest idea is to require that the left and right subtrees have the same
height. As Figure 4.31 shows, this idea does not force the tree to be shallow.

Figure 4.31 A bad binary tree. Requiring balance at the root is not enough.

4.4 AVL Trees

Another balance condition would insist that every node must have left and right sub-
trees of the same height. If the height of an empty subtree is defined to be —1 (as is
usual), then only perfectly balanced trees of 2¥ — 1 nodes would satisfy this criterion.
Thus, although this guarantees trees of small depth, the balance condition is too rigid to
be useful and needs to be relaxed.

An AVL tree is identical to a binary search tree, except that for every node in the tree,
the height of the left and right subtrees can differ by at most 1. (The height of an empty
tree is defined to be —1.) In Figure 4.32 the tree on the left is an AVL tree but the tree on
the right is not. Height information is kept for each node (in the node structure). It can be
shown that the height of an AVL tree is at most roughly 1.44log(N + 2) — 1.328, but in
practice it is only slightly more than log N. As an example, the AVL tree of height 9 with
the fewest nodes (143) is shown in Figure 4.33. This tree has as a left subtree an AVL tree
of height 7 of minimum size. The right subtree is an AVL tree of height 8 of minimum size.
This tells us that the minimum number of nodes, S(h), in an AVL tree of height h is given
by S(h) =Sth—1)4+Sth—2)+ 1. Forh=0,S(h) = 1. For h = 1, S(h) = 2. The function
S(h) is closely related to the Fibonacci numbers, from which the bound claimed above on
the height of an AVL tree follows.

Thus, all the tree operations can be performed in O(logN) time, except possibly
insertion and deletion. When we do an insertion, we need to update all the balancing
information for the nodes on the path back to the root, but the reason that insertion
is potentially difficult is that inserting a node could violate the AVL tree property. (For
instance, inserting 6 into the AVL tree in Figure 4.32 would destroy the balance condition
at the node with key 8.) If this is the case, then the property has to be restored before the
insertion step is considered over. It turns out that this can always be done with a simple
modification to the tree, known as a rotation.

After an insertion, only nodes that are on the path from the insertion point to the root
might have their balance altered because only those nodes have their subtrees altered. As
we follow the path up to the root and update the balancing information, we may find a
node whose new balance violates the AVL condition. We will show how to rebalance the
tree at the first (i.e., deepest) such node, and we will prove that this rebalancing guarantees
that the entire tree satisfies the AVL property.

Figure 4.32 Two binary search trees. Only the left tree is AVL.

145

146

Chapter4 Trees

i

Let us call the node that must be rebalanced «. Since any node has at most two chil-
dren, and a height imbalance requires that «'s two subtrees’” heights differ by two, it is easy
to see that a violation might occur in four cases:

Figure 4.33 Smallest AVL tree of height 9

1. An insertion into the left subtree of the left child of «

2. An insertion into the right subtree of the left child of «
3. An insertion into the left subtree of the right child of «
4. An insertion into the right subtree of the right child of o

Cases 1 and 4 are mirror image symmetries with respect to «, as are cases 2 and
3. Consequently, as a matter of theory, there are two basic cases. From a programming
perspective, of course, there are still four cases.

The first case, in which the insertion occurs on the “outside” (i.e., left-left or right—
right), is fixed by a single rotation of the tree. The second case, in which the insertion
occurs on the “inside” (i.e., left-right or right-left) is handled by the slightly more complex
double rotation. These are fundamental operations on the tree that we’ll see used several
times in balanced-tree algorithms. The remainder of this section describes these rotations,
proves that they suffice to maintain balance, and gives a casual implementation of the AVL
tree. Chapter 12 describes other balanced-tree methods with an eye toward a more careful
implementation.

4.4 AVL Trees

4.4.1 Single Rotation

Figure 4.34 shows the single rotation that fixes case 1. The before picture is on the left and
the after is on the right. Let us analyze carefully what is going on. Node k, violates the
AVL balance property because its left subtree is two levels deeper than its right subtree
(the dashed lines in the middle of the diagram mark the levels). The situation depicted
is the only possible case 1 scenario that allows ky to satisfy the AVL property before an
insertion but violate it afterwards. Subtree X has grown to an extra level, causing it to be
exactly two levels deeper than Z. Y cannot be at the same level as the new X because then
k, would have been out of balance before the insertion, and Y cannot be at the same level as
Z because then k1 would be the first node on the path toward the root that was in violation
of the AVL balancing condition.

To ideally rebalance the tree, we would like to move X up a level and Z down a level.
Note that this is actually more than the AVL property would require. To do this, we rear-
range nodes into an equivalent tree as shown in the second part of Figure 4.34. Here is
an abstract scenario: Visualize the tree as being flexible, grab the child node k1, close your
eyes, and shake it, letting gravity take hold. The result is that k1 will be the new root.
The binary search tree property tells us that in the original tree k; > ki, so ky becomes
the right child of k; in the new tree. X and Z remain as the left child of k; and right
child of ky, respectively. Subtree Y, which holds items that are between kj and ky in the
original tree, can be placed as ky’s left child in the new tree and satisfy all the ordering
requirements.

As a result of this work, which requires only a few pointer changes, we have another
binary search tree that is an AVL tree. This happens because X moves up one level, Y
stays at the same level, and Z moves down one level. ky and k; not only satisfy the AVL
requirements, but they also have subtrees that are exactly the same height. Furthermore,
the new height of the entire subtree is exactly the same as the height of the original subtree
prior to the insertion that caused X to grow. Thus no further updating of heights on the
path to the root is needed, and consequently no further rotations are needed. Figure 4.35
shows that after the insertion of 6 into the original AVL tree on the left, node 8 becomes
unbalanced. Thus, we do a single rotation between 7 and 8, obtaining the tree on the right.

As we mentioned earlier, case 4 represents a symmetric case. Figure 4.36 shows how
a single rotation is applied. Let us work through a rather long example. Suppose we start
with an initially empty AVL tree and insert the items 3, 2, 1, and then 4 through 7 in
sequential order. The first problem occurs when it is time to insert item 1 because the AVL

Figure 4.34 Single rotation to fix case 1

147

148

Chapter4 Trees

Figure 4.36 Single rotation fixes case 4

property is violated at the root. We perform a single rotation between the root and its left
child to fix the problem. Here are the before and after trees:

B :
B
B

before after

A dashed line joins the two nodes that are the subject of the rotation. Next we insert 4,
which causes no problems, but the insertion of 5 creates a violation at node 3 that is fixed
by a single rotation. Besides the local change caused by the rotation, the programmer must
remember that the rest of the tree has to be informed of this change. Here this means that
25 right child must be reset to link to 4 instead of 3. Forgetting to do so is easy and would
destroy the tree (4 would be inaccessible).

4.4 AVL Trees

\
\,
N
\
\.

before e after

Next we insert 6. This causes a balance problem at the root, since its left subtree is of
height 0 and its right subtree would be height 2. Therefore, we perform a single rotation at
the root between 2 and 4.

The rotation is performed by making 2 a child of 4 and 4’s original left subtree the new right
subtree of 2. Every item in this subtree must lie between 2 and 4, so this transformation
makes sense. The next item we insert is 7, which causes another rotation:

® ©
| “
ONRO ® O O & O
before 0 after

4.4.2 Double Rotation

The algorithm described above has one problem: As Figure 4.37 shows, it does not work
for cases 2 or 3. The problem is that subtree Y is too deep, and a single rotation does not
make it any less deep. The double rotation that solves the problem is shown in Figure 4.38.

The fact that subtree Y in Figure 4.37 has had an item inserted into it guarantees that it
is nonempty. Thus, we may assume that it has a root and two subtrees. Consequently, the

149

Chapter4 Trees

Figure 4.38 Left-right double rotation to fix case 2

tree may be viewed as four subtrees connected by three nodes. As the diagram suggests,
exactly one of tree B or C is two levels deeper than D (unless all are empty), but we cannot
be sure which one. It turns out not to matter; in Figure 4.38, both B and C are drawn at
1% levels below D.

To rebalance, we see that we cannot leave ks as the root, and a rotation between k3 and
k1 was shown in Figure 4.37 to not work, so the only alternative is to place ky as the new
root. This forces k; to be k% left child and k3 to be its right child, and it also completely
determines the resulting locations of the four subtrees. It is easy to see that the resulting
tree satisfies the AVL tree property, and as was the case with the single rotation, it restores
the height to what it was before the insertion, thus guaranteeing that all rebalancing and
height updating is complete. Figure 4.39 shows that the symmetric case 3 can also be fixed

Figure 4.39 Right-left double rotation to fix case 3

4.4 AVL Trees

by a double rotation. In both cases the effect is the same as rotating between «’s child and
grandchild, and then between o and its new child.

We will continue our previous example by inserting 10 through 16 in reverse order,
followed by 8 and then 9. Inserting 16 is easy, since it does not destroy the balance property,
but inserting 15 causes a height imbalance at node 7. This is case 3, which is solved by a
right-left double rotation. In our example, the right-left double rotation will involve 7, 16,
and 15. In this case, k; is the node with item 7, k3 is the node with item 16, and k is the
node with item 15. Subtrees A, B, C, and D are empty.

before

Next we insert 14, which also requires a double rotation. Here the double rotation
that will restore the tree is again a right-left double rotation that will involve 6, 15, and
7. In this case, k; is the node with item 6, k; is the node with item 7, and k3 is the node
with item 15. Subtree A is the tree rooted at the node with item 5; subtree B is the empty
subtree that was originally the left child of the node with item 7, subtree C is the tree
rooted at the node with item 14, and finally, subtree D is the tree rooted at the node with
item 16.

before @ after

If 13 is now inserted, there is an imbalance at the root. Since 13 is not between 4 and
7, we know that the single rotation will work.

151

152 Chapter4 Trees

before @ after

Insertion of 12 will also require a single rotation:

13)
before @ after

To insert 11, a single rotation needs to be performed, and the same is true for the
subsequent insertion of 10. We insert 8 without a rotation, creating an almost perfectly

balanced tree:

before

4.4 AVL Trees

Finally, we will insert 9 to show the symmetric case of the double rotation. Notice
that 9 causes the node containing 10 to become unbalanced. Since 9 is between 10 and 8
(which is 105 child on the path to 9), a double rotation needs to be performed, yielding
the following tree:

Let us summarize what happens. The programming details are fairly straightforward
except that there are several cases. To insert a new node with item X into an AVL tree T, we
recursively insert X into the appropriate subtree of T (let us call this Trr). If the height of
Tir does not change, then we are done. Otherwise, if a height imbalance appears in T, we
do the appropriate single or double rotation depending on X and the items in T and T,
update the heights (making the connection from the rest of the tree above), and we are
done. Since one rotation always suffices, a carefully coded nonrecursive version generally
turns out to be faster than the recursive version, but on modern compilers the difference is
not as significant as in the past. However, nonrecursive versions are quite difficult to code
correctly, whereas a casual recursive implementation is easily readable.

Another efficiency issue concerns storage of the height information. Since all that is
really required is the difference in height, which is guaranteed to be small, we could get
by with two bits (to represent +1, 0, —1) if we really try. Doing so will avoid repetitive
calculation of balance factors but results in some loss of clarity. The resulting code is some-
what more complicated than if the height were stored at each node. If a recursive routine
is written, then speed is probably not the main consideration. In this case, the slight speed
advantage obtained by storing balance factors hardly seems worth the loss of clarity and
relative simplicity. Furthermore, since most machines will align this to at least an 8-bit
boundary anyway, there is not likely to be any difference in the amount of space used. An
8-bit (signed) char will allow us to store absolute heights of up to 127. Since the tree is
balanced, it is inconceivable that this would be insufficient (see the exercises).

153

154

Chapter4 Trees

1 struct AviNode

2 A

3 Comparable element;

4 AviNode *left;

5 AviNode *right;

6 int height;

7

8 AviNode(const Comparable & ele, AviNode *1t, AviNode *rt, int h = 0)
9 : element{ ele }, left{ 1t }, right{ rt }, height{ h } { }
10
11 AvINode(Comparable && ele, AviNode *1t, AvINode *rt, int h =0)
12 : element{ std::move(ele) }, left{ 1t }, right{ rt }, height{ h } { }
13}

Figure 4.40 Node declaration for AVL trees

/**

* Return the height of node t or -1 if nullptr.
*/

int height(AviNode *t) const

{
return t == nullptr ? -1 : t->height;

~N O U AW N =

}

Figure 4.41 Function to compute height of an AVL node

With all this, we are ready to write the AVL routines. We show some of the code here;
the rest is online. First, we need the AviNode class. This is given in Figure 4.40. We also
need a quick function to return the height of a node. This function is necessary to handle
the annoying case of a nul1ptr pointer. This is shown in Figure 4.41. The basic insertion
routine (see Figure 4.42) adds only a single line at the end that invokes a balancing method.
The balancing method applies a single or double rotation if needed, updates the height,
and returns the resulting tree.

For the trees in Figure 4.43, rotateWithLeftChild converts the tree on the left to the
tree on the right, returning a pointer to the new root. rotateWithRightChild is symmetric.
The code is shown in Figure 4.44.

Similarly, the double rotation pictured in Figure 4.45 can be implemented by the code
shown in Figure 4.46.

Since deletion in a binary search tree is somewhat more complicated than insertion,
one can assume that deletion in an AVL tree is also more complicated. In a perfect world,
one would hope that the deletion routine in Figure 4.26 could easily be modified by chang-
ing the last line to return after calling the balance method, as was done for insertion. This
would yield the code in Figure 4.47. This change works! A deletion could cause one side

—_ —
— O O 0 N LW N =

W W W W W W W W W WK DM DNDDNDNDNDN = = = = =
O 0 N O U h W N = O WOo O Ul A WNHROWOWWN L A Wk

40

4.4 AVL Trees

Internal method to insert into a subtree.
x is the item to insert.

t is the node that roots the subtree.

Set the new root of the subtree.

void insert(const Comparable & x, AviNode * & t)

{

if(t ==nullptr)

t = new AvIiNode{ x, nullptr, nullptr };
else if(x < t->element)

insert(x, t->left);
else if(t->element < x)

insert(x, t->right);

balance(t);

static const int ALLOWED IMBALANCE = 1;

// Assume t is balanced or within one of being balanced
void balance(AvIiNode * & t)

{

}

if(t == nullptr)
return;

if(height(t->left) - height(t->right) > ALLOWED IMBALANCE)
if(height(t->left->left) >= height(t->left->right))
rotateWithLeftChild(t);
else
doubleWithLeftChild(t);
else
if(height(t->right) - height(t->left) > ALLOWED IMBALANCE)
if(height(t->right->right) >= height(t->right->left))
rotateWithRightChild(t);
else
doubleWithRightChild(t);

t->height = max(height(t->Teft), height(t->right)) + 1;

Figure 4.42 Insertion into an AVL tree

155

Chapter4 Trees

Figure 4.43 Single rotation

1 /**

2 * Rotate binary tree node with left child.

3 * For AVL trees, this is a single rotation for case 1.

4 * Update heights, then set new root.

5 */

6 void rotateWithLeftChild(AvIiNode * & k2)

7 A

8 AviNode *kl = k2->left;

9 k2->Teft = kl->right;
10 kl1->right = k2;
11 k2->height = max(height(k2->Teft), height(k2->right)) + 1;
12 k1->height = max(height(k1->left), k2->height) + 1;
13 k2 = k1;
4}

Figure 4.44 Routine to perform single rotation

(k)
N (k)
JON

Figure 4.45 Double rotation

of the tree to become two levels shallower than the other side. The case-by-case analy-
sis is similar to the imbalances that are caused by insertion, but not exactly the same. For
instance, case 1 in Figure 4.34, which would now reflect a deletion from tree Z (rather than
an insertion into X), must be augmented with the possibility that tree Y could be as deep
as tree X. Even so, it is easy to see that the rotation rebalances this case and the symmetric
case 4 in Figure 4.36. Thus the code for balance in Figure 4.42 lines 28 and 34 uses >=

O 0o N O L A W N =

—
(e

11

4.4 AVL Trees

/**

* Double rotate binary tree node: first left child

* with its right child; then node k3 with new Teft child.
* For AVL trees, this is a double rotation for case 2.

* Update heights, then set new root.

*/

void doubleWithLeftChild(AviNode * & k3)

{

}

rotateWithRightChild(k3->left);
rotateWithLeftChild(k3);

Figure 4.46 Routine to perform double rotation

—_ —
— O O 0 N O LN =

DN D NN NN NN = = = e e e e
W NN R W= O o N Oy N

29

/**

* Internal method to remove from a subtree.
* x is the item to remove.

* t is the node that roots the subtree.

* Set the new root of the subtree.

*/

void remove(const Comparable & x, AvINode * & t)

{

}

if(t == nullptr)
return; // Item not found; do nothing

if(x < t->element)
remove(x, t->left);
else if(t->element < x)
remove(x, t->right);
else if(t->left != nullptr && t->right != nullptr) // Two children
{
t->element = findMin(t->right)->element;
remove(t->element, t->right);
}
else
{
AviNode *oldNode = t;
t = (t->Teft != nullptr) ? t->left : t->right;
delete oldNode;

balance(t);

Figure 4.47 Deletion in an AVL tree

157

Chapter4 Trees

instead of > specifically to ensure that single rotations are done in these cases rather than
double rotations. We leave verification of the remaining cases as an exercise.

4.5 Splay Trees

We now describe a relatively simple data structure known as a splay tree that guaran-
tees that any M consecutive tree operations starting from an empty tree take at most
OM logN) time. Although this guarantee does not preclude the possibility that any single
operation might take ®(N) time, and thus the bound is not as strong as an O(log N) worst-
case bound per operation, the net effect is the same: There are no bad input sequences.
Generally, when a sequence of M operations has total worst-case running time of O(Mf(N)),
we say that the amortized running time is O(f(N)). Thus, a splay tree has an O(logN)
amortized cost per operation. Over a long sequence of operations, some may take more,
some less.

Splay trees are based on the fact that the O(N) worst-case time per operation for binary
search trees is not bad, as long as it occurs relatively infrequently. Any one access, even if it
takes ®(N), is still likely to be extremely fast. The problem with binary search trees is that
it is possible, and not uncommon, for a whole sequence of bad accesses to take place. The
cumulative running time then becomes noticeable. A search tree data structure with O(N)
worst-case time, but a guarantee of at most O(M log N) for any M consecutive operations,
is certainly satisfactory, because there are no bad sequences.

If any particular operation is allowed to have an O(N) worst-case time bound, and
we still want an O(log N) amortized time bound, then it is clear that whenever a node is
accessed, it must be moved. Otherwise, once we find a deep node, we could keep perform-
ing accesses on it. If the node does not change location, and each access costs @(N), then
a sequence of M accesses will cost @(M - N).

The basic idea of the splay tree is that after a node is accessed, it is pushed to the root
by a series of AVL tree rotations. Notice that if a node is deep, there are many nodes on
the path that are also relatively deep, and by restructuring we can make future accesses
cheaper on all these nodes. Thus, if the node is unduly deep, then we want this restructur-
ing to have the side effect of balancing the tree (to some extent). Besides giving a good
time bound in theory, this method is likely to have practical utility, because in many
applications, when a node is accessed, it is likely to be accessed again in the near future.
Studies have shown that this happens much more often than one would expect. Splay trees
also do not require the maintenance of height or balance information, thus saving space
and simplifying the code to some extent (especially when careful implementations are
written).

4.5.1 A Simple Idea (That Does Not Work)

One way of performing the restructuring described above is to perform single rotations,
bottom up. This means that we rotate every node on the access path with its parent. As an
example, consider what happens after an access (a find) on k; in the following tree:

4.5 Splay Trees

The access path is dashed. First, we would perform a single rotation between k; and its
parent, obtaining the following tree:

Then two more rotations are performed until we reach the root:

159

160

Chapter4 Trees

These rotations have the effect of pushing k; all the way to the root, so that future
accesses on kj are easy (for a while). Unfortunately, it has pushed another node (k3) almost
as deep as k; used to be. An access on that node will then push another node deep, and
so on. Although this strategy makes future accesses of k; cheaper, it has not significantly
improved the situation for the other nodes on the (original) access path. It turns out that
it is possible to prove that using this strategy, there is a sequence of M operations requiring
Q(M - N) time, so this idea is not quite good enough. The simplest way to show this is to
consider the tree formed by inserting keys 1,2,3,..., N into an initially empty tree (work
this example out). This gives a tree consisting of only left children. This is not necessarily
bad, though, since the time to build this tree is O(N) total. The bad part is that accessing
the node with key 1 takes N units of time, where each node on the access path counts as
one unit. After the rotations are complete, an access of the node with key 2 takes N units
of time, key 3 takes N — 1 units, and so on. The total for accessing all the keys in order is
N+ Z{V:z i = Q(N?). After they are accessed, the tree reverts to its original state, and we
can repeat the sequence.

4.5.2 Splaying

The splaying strategy is similar to the rotation idea above, except that we are a little more
selective about how rotations are performed. We will still rotate bottom up along the access

4.5 Splay Trees

(P) AN
/N

N X
N

Figure 4.48 Zig-zag

G@
/AN B\

Figure 4.49 Zig-zig

path. Let X be a (non-root) node on the access path at which we are rotating. If the parent
of X is the root of the tree, we merely rotate X and the root. This is the last rotation along
the access path. Otherwise, X has both a parent (P) and a grandparent (G), and there are
two cases, plus symmetries, to consider. The first case is the zig-zag case (see Fig. 4.48).
Here X is a right child and P is a left child (or vice versa). If this is the case, we perform a
double rotation, exactly like an AVL double rotation. Otherwise, we have a zig-zig case: X
and P are both left children (or, in the symmetric case, both right children). In that case,
we transform the tree on the left of Figure 4.49 to the tree on the right.
As an example, consider the tree from the last example, with a contains on ky:

The first splay step is at k) and is clearly a zig-zag, so we perform a standard AVL double
rotation using ki, ka, and k3. The resulting tree follows:

162

Chapter4 Trees

The next splay step at k; is a zig-zig, so we do the zig-zig rotation with ki, k4, and ks,
obtaining the final tree:

Although it is hard to see from small examples, splaying not only moves the accessed
node to the root but also has the effect of roughly halving the depth of most nodes on the
access path (some shallow nodes are pushed down at most two levels).

To see the difference that splaying makes over simple rotation, consider again the effect
of inserting items 1,2, 3,...,N into an initially empty tree. This takes a total of O(N), as
before, and yields the same tree as simple rotations. Figure 4.50 shows the result of splaying
at the node with item 1. The difference is that after an access of the node with item 1, which

Figure 4.50 Result of splaying at node 1

4.5 Splay Trees

takes N units, the access on the node with item 2 will only take about N/2 units instead of
N units; there are no nodes quite as deep as before.

An access on the node with item 2 will bring nodes to within N/4 of the root, and this
is repeated until the depth becomes roughly log N (an example with N = 7 is too small to
see the effect well). Figures 4.51 to 4.59 show the result of accessing items 1 through 9 in
a 32-node tree that originally contains only left children. Thus we do not get the same bad
behavior from splay trees that is prevalent in the simple rotation strategy. (Actually, this
turns out to be a very good case. A rather complicated proof shows that for this example,
the N accesses take a total of O(N) time.)

These figures highlight the fundamental and crucial property of splay trees. When
access paths are long, thus leading to a longer-than-normal search time, the rotations tend
to be good for future operations. When accesses are cheap, the rotations are not as good and
can be bad. The extreme case is the initial tree formed by the insertions. All the insertions
were constant-time operations leading to a bad initial tree. At that point in time, we had
a very bad tree, but we were running ahead of schedule and had the compensation of less
total running time. Then a couple of really horrible accesses left a nearly balanced tree,
but the cost was that we had to give back some of the time that had been saved. The
main theorem, which we will prove in Chapter 11, is that we never fall behind a pace of
O(log N) per operation: We are always on schedule, even though there are occasionally bad
operations.

Figure 4.51 Result of splaying at node 1 a tree of all left children

163

164

Chapter4 Trees

Figure 4.54 Result of splaying the previous tree at node 4

We can perform deletion by accessing the node to be deleted. This puts the node at the
root. If it is deleted, we get two subtrees T and Tg (left and right). If we find the largest
element in T (which is easy), then this element is rotated to the root of Tr, and Tr will
now have a root with no right child. We can finish the deletion by making T the right
child.

4.5 Splay Trees 165

Figure 4.58 Result of splaying the previous tree at node 8

166

Chapter4 Trees

Figure 4.59 Result of splaying the previous tree at node 9

The analysis of splay trees is difficult, because it must take into account the ever-
changing structure of the tree. On the other hand, splay trees are much simpler to program
than most balanced search trees, since there are fewer cases to consider and no balance
information to maintain. Some empirical evidence suggests that this translates into faster
code in practice, although the case for this is far from complete. Finally, we point out that
there are several variations of splay trees that can perform even better in practice. One
variation is completely coded in Chapter 12.

4.6 Tree Traversals (Revisited)

Because of the ordering information in a binary search tree, it is simple to list all the items
in sorted order. The recursive function in Figure 4.60 does the real work.

Convince yourself that this function works. As we have seen before, this kind of routine
when applied to trees is known as an inorder traversal (which makes sense, since it lists
the items in order). The general strategy of an inorder traversal is to process the left subtree
first, then perform processing at the current node, and finally process the right subtree. The
interesting part about this algorithm, aside from its simplicity, is that the total running time
is O(N). This is because there is constant work being performed at every node in the tree.
Each node is visited once, and the work performed at each node is testing against nullptr,
setting up two function calls, and doing an output statement. Since there is constant work
per node and N nodes, the running time is O(N).

Sometimes we need to process both subtrees first before we can process a node. For
instance, to compute the height of a node, we need to know the height of the subtrees
first. The code in Figure 4.61 computes this. Since it is always a good idea to check the
special cases—and crucial when recursion is involved—notice that the routine will declare
the height of a leaf to be zero, which is correct. This general order of traversal, which we
have also seen before, is known as a postorder traversal. Again, the total running time is
O(N), because constant work is performed at each node.

4.6 Tree Traversals (Revisited) 167

1 /**

2 * Print the tree contents in sorted order.
3 */

4 void printTree(ostream & out = cout) const
5 4

6 if(isEmpty())

7 out << "Empty tree" << endl;

8 else

9 printTree(root, out);

10}

11

12 /**

13 * Internal method to print a subtree rooted at t in sorted order.
14 */

15 void printTree(BinaryNode *t, ostream & out) const
16 |

17 if(t != nullptr)

18 {

19 printTree(t->left, out);

20 out << t->element << endl;

21 printTree(t->right, out);

22 }

23}

Figure 4.60 Routine to print a binary search tree in order

1 /**

2 * Internal method to compute the height of a subtree rooted at t.
3 */

4 int height(BinaryNode *t)

5

6 if(t ==nullptr)

7 return -1;

8 else

9 return 1 + max(height(t->left), height(t->right));
10}

Figure 4.61 Routine to compute the height of a tree using a postorder traversal

The third popular traversal scheme that we have seen is preorder traversal. Here, the
node is processed before the children. This could be useful, for example, if you wanted to
label each node with its depth.

The common idea in all of these routines is that you handle the nullptr case first and
then the rest. Notice the lack of extraneous variables. These routines pass only the pointer

168

Chapter4 Trees

to the node that roots the subtree, and do not declare or pass any extra variables. The more
compact the code, the less likely that a silly bug will turn up. A fourth, less often used,
traversal (which we have not seen yet) is level-order traversal. In a level-order traversal,
all nodes at depth d are processed before any node at depth d + 1. Level-order traversal
differs from the other traversals in that it is not done recursively; a queue is used, instead
of the implied stack of recursion.

4.7 B-Trees

So far, we have assumed that we can store an entire data structure in the main memory of
a computer. Suppose, however, that we have more data than can fit in main memory, and,
as a result, must have the data structure reside on disk. When this happens, the rules of
the game change, because the Big-Oh model is no longer meaningful.

The problem is that a Big-Oh analysis assumes that all operations are equal. However,
this is not true, especially when disk I/O is involved. Modern computers execute billions
of instructions per second. That is pretty fast, mainly because the speed depends largely
on electrical properties. On the other hand, a disk is mechanical. Its speed depends largely
on the time it takes to spin the disk and to move a disk head. Many disks spin at 7,200
RPM. Thus, in 1 min it makes 7,200 revolutions; hence, one revolution occurs in 1/120 of
a second, or 8.3 ms. On average, we might expect that we have to spin a disk halfway to
find what we are looking for, but this is compensated by the time to move the disk head, so
we get an access time of 8.3 ms. (This is a very charitable estimate; 9-11 ms access times
are more common.) Consequently, we can do approximately 120 disk accesses per second.
This sounds pretty good, until we compare it with the processor speed. What we have
is billions instructions equal to 120 disk accesses. Of course, everything here is a rough
calculation, but the relative speeds are pretty clear: Disk accesses are incredibly expensive.
Furthermore, processor speeds are increasing at a much faster rate than disk speeds (it is
disk sizes that are increasing quite quickly). So we are willing to do lots of calculations
just to save a disk access. In almost all cases, it is the number of disk accesses that will
dominate the running time. Thus, if we halve the number of disk accesses, the running
time will halve.

Here is how the typical search tree performs on disk: Suppose we want to access the
driving records for citizens in the state of Florida. We assume that we have 10,000,000
items, that each key is 32 bytes (representing a name), and that a record is 256 bytes. We
assume this does not fit in main memory and that we are 1 of 20 users on a system (so we
have 1/20 of the resources). Thus, in 1 sec we can execute many millions of instructions
or perform six disk accesses.

The unbalanced binary search tree is a disaster. In the worst case, it has linear depth
and thus could require 10,000,000 disk accesses. On average, a successful search would
require 1.38logN disk accesses, and since log 10000000 ~ 24, an average search would
require 32 disk accesses, or 5 sec. In a typical randomly constructed tree, we would expect
that a few nodes are three times deeper; these would require about 100 disk accesses, or
16 sec. An AVL tree is somewhat better. The worst case of 1.44logN is unlikely to occur,
and the typical case is very close to logN. Thus an AVL tree would use about 25 disk
accesses on average, requiring 4 sec.

4.7 B-Trees

Figure 4.62 5-ary tree of 31 nodes has only three levels

We want to reduce the number of disk accesses to a very small constant, such as three
or four. We are willing to write complicated code to do this, because machine instructions
are essentially free, as long as we are not ridiculously unreasonable. It should probably be
clear that a binary search tree will not work, since the typical AVL tree is close to optimal
height. We cannot go below logN using a binary search tree. The solution is intuitively
simple: If we have more branching, we have less height. Thus, while a perfect binary
tree of 31 nodes has five levels, a 5-ary tree of 31 nodes has only three levels, as shown
in Figure 4.62. An M-ary search tree allows M-way branching. As branching increases,
the depth decreases. Whereas a complete binary tree has height that is roughly log, N, a
complete M-ary tree has height that is roughly log,, N.

We can create an M-ary search tree in much the same way as a binary search tree. In a
binary search tree, we need one key to decide which of two branches to take. In an M-ary
search tree, we need M — 1 keys to decide which branch to take. To make this scheme
efficient in the worst case, we need to ensure that the M-ary search tree is balanced in some
way. Otherwise, like a binary search tree, it could degenerate into a linked list. Actually,
we want an even more restrictive balancing condition. That is, we do not want an M-ary
search tree to degenerate to even a binary search tree, because then we would be stuck
with log N accesses.

One way to implement this is to use a B-tree. The basic B-tree is described here. Many
variations and improvements are known, and an implementation is somewhat complex
because there are quite a few cases. However, it is easy to see that, in principle, a B-tree
guarantees only a few disk accesses.

A B-tree of order M is an M-ary tree with the following properties:”*

1. The data items are stored at leaves.

2. The nonleaf nodes store up to M — 1 keys to guide the searching; key i represents the
smallest key in subtree i + 1.

3. The root is either a leaf or has between two and M children.
4. All nonleaf nodes (except the root) have between [M/27] and M children.

5. All leaves are at the same depth and have between [L/27] and L data items, for some L
(the determination of L is described shortly).

3'What is described is popularly known as a Bt tree.

*Rules 3 and 5 must be relaxed for the first L insertions.

169

170

Chapter4 Trees

41,166 87|

|
| {] }

|8|18|26|35| |48|51 54 |72|78|83 |92|97|
8 711921197

|
8 |[18(]26]|35((41]|48|(51||54 66(|72|]78]|83 87119
20(|28|136((42](49((52]|56 68(|73|(79]|84 891193(98
1211221(301|37||44|[50]|53|(58 69(|74|(81]|85 90{195((99
14|124|(31]|38||46 59 70(|76
16 321139

Figure 4.63 B-tree of order 5

[©)F 2 8]
—_
o

An example of a B-tree of order 5 is shown in Figure 4.63. Notice that all nonleaf nodes
have between three and five children (and thus between two and four keys); the root could
possibly have only two children. Here, we have L = 5. It happens that L and M are the
same in this example, but this is not necessary. Since L is 5, each leaf has between three
and five data items. Requiring nodes to be half full guarantees that the B-tree does not
degenerate into a simple binary tree. Although there are various definitions of B-trees that
change this structure, mostly in minor ways, this definition is one of the popular forms.

Each node represents a disk block, so we choose M and L on the basis of the size of the
items that are being stored. As an example, suppose one block holds 8,192 bytes. In our
Florida example, each key uses 32 bytes. In a B-tree of order M, we would have M — 1 keys,
for a total of 32M — 32 bytes, plus M branches. Since each branch is essentially a number
of another disk block, we can assume that a branch is 4 bytes. Thus the branches use 4M
bytes. The total memory requirement for a nonleaf node is thus 36M —32. The largest value
of M for which this is no more than 8,192 is 228. Thus we would choose M = 228. Since
each data record is 256 bytes, we would be able to fit 32 records in a block. Thus we would
choose L = 32. We are guaranteed that each leaf has between 16 and 32 data records and
that each internal node (except the root) branches in at least 114 ways. Since there are
10,000,000 records, there are, at most, 625,000 leaves. Consequently, in the worst case,
leaves would be on level 4. In more concrete terms, the worst-case number of accesses is
given by approximately logy,, N, give or take 1. (For example, the root and the next level
could be cached in main memory, so that over the long run, disk accesses would be needed
only for level 3 and deeper.)

The remaining issue is how to add and remove items from the B-tree. The ideas
involved are sketched next. Note that many of the themes seen before recur.

We begin by examining insertion. Suppose we want to insert 57 into the B-tree in
Figure 4.63. A search down the tree reveals that it is not already in the tree. We can add
it to the leaf as a fifth item. Note that we may have to reorganize all the data in the leaf to
do this. However, the cost of doing this is negligible when compared to that of the disk
access, which in this case also includes a disk write.

Of course, that was relatively painless, because the leaf was not already full. Suppose
we now want to insert 55. Figure 4.64 shows a problem: The leaf where 55 wants to go is
already full. The solution is simple: Since we now have L 4 1 items, we split them into two

4.7 B-Trees

41|66 87|

|8|18|26|35| |48|51 54| |72|78|83| |92|97|

8 ||18]]26]|35(|41|(48||51|[54 66|[72]]78|83 871192197
421149((52(156 68(|73||791|84 89119398
121122(|30(|37|(441|50]| (53|57 69|]74]|81|85 90([95(|99
14((24|(31]|38||46 58 70|76

16 321139 59

[N]
Pt
o
\e]
o
N\
o0
[%)
@)}

Figure 4.64 B-tree after insertion of 57 into the tree in Figure 4.63

leaves, both guaranteed to have the minimum number of data records needed. We form
two leaves with three items each. Two disk accesses are required to write these leaves, and
a third disk access is required to update the parent. Note that in the parent, both keys and
branches change, but they do so in a controlled way that is easily calculated. The resulting
B-tree is shown in Figure 4.65. Although splitting nodes is time-consuming because it
requires at least two additional disk writes, it is a relatively rare occurrence. If L is 32,
for example, then when a node is split, two leaves with 16 and 17 items, respectively, are
created. For the leaf with 17 items, we can perform 15 more insertions without another
split. Put another way, for every split, there are roughly L/2 nonsplits.

The node splitting in the previous example worked because the parent did not have its
full complement of children. But what would happen if it did? Suppose, for example, that
we insert 40 into the B-tree in Figure 4.65. We must split the leaf containing the keys 35
through 39, and now 40, into two leaves. But doing this would give the parent six children,
and it is allowed only five. The solution is to split the parent. The result of this is shown
in Figure 4.66. When the parent is split, we must update the values of the keys and also
the parent’s parent, thus incurring an additional two disk writes (so this insertion costs five
disk writes). However, once again, the keys change in a very controlled manner, although
the code is certainly not simple because of a host of cases.

|41 66 87|
I

| { | !

|8|18|26|35| |48|51|54|57 |72|78|83 |92|97|
815154 8

| |
208 [[18](26((35((41|[48]|51||54||57]|66||72||78||83 87(1921197
4 [110]]120((28]]|36||42([49||52||55]|58](68|73||79||84 891193 (98
6 |[12]]22](30(|37(|44|[50]|53]||56(|59]|69||74||81||85 90((95(|99
1411241|31(|38|[46 70|76
16 321139

Figure 4.65 Insertion of 55 into the B-tree in Figure 4.64 causes a split into two leaves

171

172

Chapter4 Trees

Figure 4.66 Insertion of 40 into the B-tree in Figure 4.65 causes a split into two leaves
and then a split of the parent node

When a nonleaf node is split, as is the case here, its parent gains a child. What if
the parent already has reached its limit of children? Then we continue splitting nodes
up the tree until either we find a parent that does not need to be split or we reach the
root. If we split the root, then we have two roots. Obviously, this is unacceptable, but we
can create a new root that has the split roots as its two children. This is why the root is
granted the special two-child minimum exemption. It also is the only way that a B-tree
gains height. Needless to say, splitting all the way up to the root is an exceptionally rare
event. This is because a tree with four levels indicates that the root has been split three
times throughout the entire sequence of insertions (assuming no deletions have occurred).
In fact, the splitting of any nonleaf node is also quite rare.

There are other ways to handle the overflowing of children. One technique is to put
a child up for adoption should a neighbor have room. To insert 29 into the B-tree in
Figure 4.66, for example, we could make room by moving 32 to the next leaf. This tech-
nique requires a modification of the parent, because the keys are affected. However, it tends
to keep nodes fuller and saves space in the long run.

We can perform deletion by finding the item that needs to be removed and then remov-
ing it. The problem is that if the leaf it was in had the minimum number of data items, then
it is now below the minimum. We can rectify this situation by adopting a neighboring item,
if the neighbor is not itself at its minimum. If it is, then we can combine with the neighbor
to form a full leaf. Unfortunately, this means that the parent has lost a child. If this causes
the parent to fall below its minimum, then it follows the same strategy. This process could

Figure 4.67 B-tree after the deletion of 99 from the B-tree in Figure 4.66

4.8 Sets and Maps in the Standard Library

percolate all the way up to the root. The root cannot have just one child (and even if this
were allowed, it would be silly). If a root is left with one child as a result of the adoption
process, then we remove the root and make its child the new root of the tree. This is the
only way for a B-tree to lose height. For example, suppose we want to remove 99 from
the B-tree in Figure 4.66. Since the leaf has only two items and its neighbor is already at
its minimum of three, we combine the items into a new leaf of five items. As a result, the
parent has only two children. However, it can adopt from a neighbor, because the neighbor
has four children. As a result, both have three children. The result is shown in Figure 4.67.

4.8 Sets and Maps in the Standard Library

The STL containers discussed in Chapter 3—namely, vector and 1ist—are inefficient for
searching. Consequently, the STL provides two additional containers, set and map, that
guarantee logarithmic cost for basic operations such as insertion, deletion, and searching.

4.8.1 Sets

The set is an ordered container that does not allow duplicates. Many of the idioms used
to access items in vector and 1ist also work for a set. Specifically, nested in the set are
iterator and const_iterator types that allow traversal of the set, and several methods
from vector and 1ist are identically named in set, including begin, end, size, and empty.
The print function template described in Figure 3.6 will work if passed a set.

The unique operations required by the set are the abilities to insert, remove, and
perform a basic search (efficiently).

The insert routine is aptly named insert. However, because a set does not allow dupli-
cates, it is possible for the insert to fail. As a result, we want the return type to be able to
indicate this with a Boolean variable. However, insert has a more complicated return type
than a bool. This is because insert also returns an iterator that represents where x is when
insert returns. This iterator represents either the newly inserted item or the existing item
that caused the insert to fail, and it is useful, because knowing the position of the item can
make removing it more efficient by avoiding the search and getting directly to the node
containing the item.

The STL defines a class template called pair that is little more than a struct with
members first and second to access the two items in the pair. There are two different
insert routines:

pair<iterator,bool> insert(const Object & x);
pair<iterator,bool> insert(iterator hint, const Object & x);

The one-parameter insert behaves as described above. The two-parameter insert allows
the specification of a hint, which represents the position where x should go. If the hint
is accurate, the insertion is fast, often O(1). If not, the insertion is done using the normal
insertion algorithm and performs comparably with the one-parameter insert. For instance,
the following code might be faster using the two-parameter insert rather than the one-
parameter insert:

173

174

Chapter4 Trees

set<int> s;
for(int i = 0; i < 1000000; ++i)
s.insert(s.end(), i);

There are several versions of erase:

int erase(const Object & x);
iterator erase(iterator itr);
iterator erase(iterator start, iterator end);

The first one-parameter erase removes x (if found) and returns the number of items
actually removed, which is obviously either 0 or 1. The second one-parameter erase
behaves the same as in vector and Tist. It removes the object at the position given by
the iterator, returns an iterator representing the element that followed itr immediately
prior to the call to erase, and invalidates itr, which becomes stale. The two-parameter
erase behaves the same as in a vector or Tist, removing all the items starting at start, up
to but not including the item at end.

For searching, rather than a contains routine that returns a Boolean variable, the set
provides a find routine that returns an iterator representing the location of the item (or
the endmarker if the search fails). This provides considerably more information, at no cost
in running time. The signature of find is

iterator find(const Object & x) const;

By default, ordering uses the Tess<Object> function object, which itself is implemented
by invoking operator< for the Object. An alternative ordering can be specified by instan-
tiating the set template with a function object type. For instance, we can create a set
that stores string objects, ignoring case distinctions by using the CaseInsensitiveCompare
function object coded in Figure 1.25. In the following code, the set s has size 1:

set<string,CaselnsensitiveCompare> s;
s.insert("Hello"); s.insert("HeLLo");
cout << "The size is: " << s.size() << endl;

4.8.2 Maps

A map is used to store a collection of ordered entries that consists of keys and their values.
Keys must be unique, but several keys can map to the same values. Thus values need not
be unique. The keys in the map are maintained in logically sorted order.

The map behaves like a set instantiated with a pair, whose comparison function
refers only to the key.5 Thus it supports begin, end, size, and empty, but the under-
lying iterator is a key-value pair. In other words, for an iterator itr, *itr is of type
pair<KeyType,ValueType>. The map also supports insert, find, and erase. For insert, one
must provide a pair<KeyType,ValueType> object. Although find requires only a key, the

5 Like a set, an optional template parameter can be used to specify a comparison function that differs from
less<KeyType>.

4.8 Sets and Maps in the Standard Library

iterator it returns references a pair. Using only these operations is often not worthwhile
because the syntactic baggage can be expensive.

Fortunately, the map has an important extra operation that yields simple syntax. The
array-indexing operator is overloaded for maps as follows:

ValueType & operator[] (const KeyType & key);

The semantics of operator[] are as follows. If key is present in the map, a reference to the
corresponding value is returned. If key is not present in the map, it is inserted with a default
value into the map and then a reference to the inserted default value is returned. The default
value is obtained by applying a zero-parameter constructor or is zero for the primitive
types. These semantics do not allow an accessor version of operator([], so operator[] cannot
be used on a map that is constant. For instance, if a map is passed by constant reference,
inside the routine, operator[] is unusable.

The code snippet in Figure 4.68 illustrates two techniques to access items in a map.
First, observe that at line 3, the left-hand side invokes operator[], thus inserting "Pat" and a
double of value O into the map, and returning a reference to that double. Then the assignment
changes that double inside the map to 75000. Line 4 outputs 75000. Unfortunately, line 5
inserts "Jan" and a salary of 0.0 into the map and then prints it. This may or may not
be the proper thing to do, depending on the application. If it is important to distinguish
between items that are in the map and those not in the map, or if it is important not to
insert into the map (because it is immutable), then an alternate approach shown at lines
7 to 12 can be used. There we see a call to find. If the key is not found, the iterator is
the endmarker and can be tested. If the key is found, we can access the second item in the
pair referenced by the iterator, which is the value associated with the key. We could also
assign to itr->second if, instead of a const_iterator, itris an iterator.

4.8.3 Implementation of set and map

C++ requires that set and map support the basic insert, erase, and find operations in
logarithmic worst-case time. Consequently, the underlying implementation is a balanced

map<string,double> salaries;

salaries["Pat"] = 75000.00;
cout << salaries["Pat"] << endl;
cout << salaries["Jan"] << endl;

map<string,double>::const _iterator itr;
itr = salaries.find("Chris");
if(itr == salaries.end())
cout << "Not an employee of this company!" << endl;
else
cout << itr->second << endl;

—_ —
— O O 0 Ny LW N =

—_
(]

Figure 4.68 Accessing values in a map

175

176

Chapter4 Trees

binary search tree. Typically, an AVL tree is not used; instead, top-down red-black trees,
which are discussed in Section 12.2, are often used.

An important issue in implementing set and map is providing support for the iterator
classes. Of course, internally, the iterator maintains a pointer to the “current” node in the
iteration. The hard part is efficiently advancing to the next node. There are several possible
solutions, some of which are listed here:

1. When the iterator is constructed, have each iterator store as its data an array containing
the set items. This doesn't work: It makes it impossible to efficiently implement any of
the routines that return an iterator after modifying the set, such as some of the versions
of erase and insert.

2. Have the iterator maintain a stack storing nodes on the path to the current node. With
this information, one can deduce the next node in the iteration, which is either the
node in the current node’s right subtree that contains the minimum item or the nearest
ancestor that contains the current node in its left subtree. This makes the iterator
somewhat large and makes the iterator code clumsy.

3. Have each node in the search tree store its parent in addition to the children. The
iterator is not as large, but there is now extra memory required in each node, and the
code to iterate is still clumsy.

4. Have each node maintain extra links: one to the next smaller, and one to the next larger
node. This takes space, but the iteration is very simple to do, and it is easy to maintain
these links.

5. Maintain the extra links only for nodes that have nullptr left or right links by using
extra Boolean variables to allow the routines to tell if a left link is being used as a
standard binary search tree left link or a link to the next smaller node, and similarly
for the right link (Exercise 4.49). This idea is called a threaded tree and is used in
many of the STL implementations.

4.8.4 An Example That Uses Several Maps

Many words are similar to other words. For instance, by changing the first letter, the word
wine can become dine, fine, Tine, mine, nine, pine, or vine. By changing the third letter, wine
can become wide, wife, wipe, or wire, among others. By changing the fourth letter, wine can
become wind, wing, wink, or wins, among others. This gives 15 different words that can
be obtained by changing only one letter in wine. In fact, there are over 20 different words,
some more obscure. We would like to write a program to find all words that can be changed
into at least 15 other words by a single one-character substitution. We assume that we have
a dictionary consisting of approximately 89,000 different words of varying lengths. Most
words are between 6 and 11 characters. The distribution includes 8,205 six-letter words,
11,989 seven-letter words, 13,672 eight-letter words, 13,014 nine-letter words, 11,297
ten-letter words, and 8,617 eleven-letter words. (In reality, the most changeable words are
three-, four-, and five-letter words, but the longer words are the time-consuming ones to
check.)

The most straightforward strategy is to use a map in which the keys are words and
the values are vectors containing the words that can be changed from the key with a

4.8 Sets and Maps in the Standard Library

1 void printHighChangeables(const map<string,vector<string>> & adjacentWords,
2 int minWords = 15)

3 {

4 for(auto & entry : adjacentWords)

5 {

6 const vector<string> & words = entry.second;

7

8 if(words.size() >= minWords)

9 {

10 cout << entry.first << " (" << words.size() << "):";
11 for(auto & str : words)

12 cout << " " << stry

13 cout << endl;

14 }

15 }

16 }

Figure 4.69 Given a map containing words as keys and a vector of words that differ in
only one character as values, output words that have minWords or more words obtainable
by a one-character substitution

one-character substitution. The routine in Figure 4.69 shows how the map that is even-
tually produced (we have yet to write code for that part) can be used to print the required
answers. The code uses a range for loop to step through the map and views entries that are
pairs consisting of a word and a vector of words. The constant references at lines 4 and 6
are used to replace complicated expressions and avoid making unneeded copies.

The main issue is how to construct the map from an array that contains the 89,000
words. The routine in Figure 4.70 is a straightforward function to test if two words are
identical except for a one-character substitution. We can use the routine to provide the
simplest algorithm for the map construction, which is a brute-force test of all pairs of words.
This algorithm is shown in Figure 4.71.

If we find a pair of words that differ in only one character, we can update the map at
lines 12 and 13. The idiom we are using at line 12 is that adjWords[str] represents the
vector of words that are identical to str, except for one character. If we have previously
seen str, then it is in the map, and we need only add the new word to the vector in the
map, and we do this by calling push_back. If we have never seen str before, then the act of
using operator[] places it in the map, with a vector of size 0, and returns this vector, so the
push_back updates the vector to be size 1. All in all, a super-slick idiom for maintaining a
map in which the value is a collection.

The problem with this algorithm is that it is slow and takes 97 seconds on our com-
puter. An obvious improvement is to avoid comparing words of different lengths. We can
do this by grouping words by their length, and then running the previous algorithm on
each of the separate groups.

To do this, we can use a second map! Here the key is an integer representing a word
length, and the value is a collection of all the words of that length. We can use a vector to

177

178

Chapter4 Trees

1 // Returns true if wordl and word2 are the same length
2 // and differ in only one character.

3 bool oneCharOff(const string & wordl, const string & word2)
4

5 if(wordl.length() != word2.length())

6 return false;

7

8 int diffs = 0;

9

10 for(int i = 0; i < wordl.length(); ++i)

11 if(wordl[1] !'= word2[i])

12 if(++diffs > 1)

13 return false;

14

15 return diffs == 1;

16}

Figure 4.70 Routine to check if two words differ in only one character

1 // Computes a map in which the keys are words and values are vectors of words
2 /] that differ in only one character from the corresponding key.

3 // Uses a quadratic algorithm.

4 map<string,vector<string>> computeAdjacentWords(const vector<string> & words)
5 |

6 map<string,vector<string>> adjWords;

7

8 for(int i = 0; 1 < words.size(); ++i)

9 for(int j =i + 1; j < words.size(); ++j)

10 if(oneCharOff(words[i], words[j]))

11 {

12 adjWords[words[i]].push_back(words[j]);

13 adjWords[words[j 1 1.push_back(words[i]);

14 }

15

16 return adjWords;

17}

Figure 4.71 Function to compute a map containing words as keys and a vector of words
that differ in only one character as values. This version runs in 1.5 minutes on an 89,000-
word dictionary.

store each collection, and the same idiom applies. The code is shown in Figure 4.72. Line
8 shows the declaration for the second map, lines 11 and 12 populate the map, and then an
extra loop is used to iterate over each group of words. Compared to the first algorithm,
the second algorithm is only marginally more difficult to code and runs in 18 seconds, or
about six times as fast.

4.8 Sets and Maps in the Standard Library

1 // Computes a map in which the keys are words and values are vectors of words
2 // that differ in only one character from the corresponding key.
3 // Uses a quadratic algorithm, but speeds things up a 1ittle by
4 // maintaining an additional map that groups words by their length.
5 map<string,vector<string>> computeAdjacentWords(const vector<string> & words)
6
7 map<string,vector<string>> adjWords;
8 map<int,vector<string>> wordsBylLength;
9
10 // Group the words by their Tength
11 for(auto & thisWord : words)
12 wordsByLength[thisWord.length()].push_back(thisWord);
13
14 // Work on each group separately
15 for(auto & entry : wordsByLength)
16 {
17 const vector<string> & groupsWords = entry.second;
18
19 for(int i = 0; i < groupsWords.size(); ++i)
20 for(int j = i + 1; j < groupsWords.size(); ++j)
21 if(oneCharOff(groupsWords[i], groupsWords[j 1))
22 {
23 adjWords[groupsWords[i]].push_back(groupsWords[j 1);
24 adjWords[groupsWords[j]].push_back(groupsWords[i]);
25 }
26 }
27
28 return adjWords;
29 }

Figure 4.72 Function to compute a map containing words as keys and a vector of words
that differ in only one character as values. It splits words into groups by word length. This
version runs in 18 seconds on an 89,000-word dictionary.

Our third algorithm is more complex and uses additional maps! As before, we group the
words by word length, and then work on each group separately. To see how this algorithm
works, suppose we are working on words of length 4. First we want to find word pairs,
such as wine and nine, that are identical except for the first letter. One way to do this is
as follows: For each word of length 4, remove the first character, leaving a three-character
word representative. Form a map in which the key is the representative, and the value is
a vector of all words that have that representative. For instance, in considering the first
character of the four-letter word group, representative "ine" corresponds to "dine", "fine",
"wine", "nine", "mine", "vine", "pine", "Tine". Representative "oot" corresponds to "boot"
"foot", "hoot", "Toot", "soot", "zoot". Each individual vector that is a value in this latest
map forms a clique of words in which any word can be changed to any other word by a
one-character substitution, so after this latest map is constructed, it is easy to traverse it
and add entries to the original map that is being computed. We would then proceed to

179

180 Chapter4 Trees

the second character of the four-letter word group, with a new map, and then the third
character, and finally the fourth character.

o~ & L1 A W N =

Y
O 0~ O Ul -h W N — O ©

20

The

for

general outline is

each group g, containing words of length len
for each position p (ranging from 0 to len-1)

{
Make an empty map<string,vector<string>> repsToWords
for each word w
{
Obtain w's representative by removing position p
Update repsToWords
}
Use cliques in repsToWords to update adjWords map
}

Figure 4.73 contains an implementation of this algorithm. The running time improves
to two seconds. It is interesting to note that although the use of the additional maps makes
the algorithm faster, and the syntax is relatively clean, the code makes no use of the fact
that the keys of the map are maintained in sorted order.

// Computes a map in which the keys are words and values are vectors of words

// that differ in only one character from the corresponding key.

// Uses an efficient algorithm that is O(N Tog N) with a map
map<string,vector<string>> computeAdjacentWords(const vector<string> & words)

{

map<string,vector<string>> adjWords;
map<int,vector<string>> wordsByLength;

// Group the words by their length
for(auto & str : words)
wordsByLength[str.length()].push_back(str);

// Work on each group separately
for(auto & entry : wordsBylLength)
{
const vector<string> & groupsWords = entry.second;
int groupNum = entry.first;

// Work on each position in each group
for(int i = 0; i < groupNum; ++i)

Figure 4.73 Function to compute a map containing words as keys and a vector of words
that differ in only one character as values. This version runs in 2 seconds on an 89,000-
word dictionary.

Summary
21 {
22 // Remove one character in specified position, computing representative.
23 // Words with same representatives are adjacent; so populate a map ...
24 map<string,vector<string>> repToWord;
25
26 for(auto & str : groupsWords)
27 {
28 string rep = str;
29 rep.erase(i, 1);
30 repToWord[rep].push_back(str);
31 }
32
33 // and then Took for map values with more than one string
34 for(auto & entry : repToWord)
35 {
36 const vector<string> & clique = entry.second;
37 if(clique.size() >= 2)
38 for(int p = 0; p < clique.size(); ++p)
39 for(int q = p + 1; q < clique.size(); ++q)
40 {
41 adjWords[clique[p]].push_back(clique[q]);
42 adjWords[clique[g]].push back(clique[p]);
43 }
44 }
45 }
46 }
47 return adjWords;
48 }

Figure 4.73 (continued)

As such, it is possible that a data structure that supports the map operations but does
not guarantee sorted order can perform better, since it is being asked to do less. Chapter 5
explores this possibility and discusses the ideas behind the alternative map implementation
that C++11 adds to the Standard Library, known as an unordered_map. An unordered map
reduces the running time of the implementation from 2 sec to 1.5 sec.

Summary

We have seen uses of trees in operating systems, compiler design, and searching.
Expression trees are a small example of a more general structure known as a parse tree,
which is a central data structure in compiler design. Parse trees are not binary, but are
relatively simple extensions of expression trees (although the algorithms to build them are
not quite so simple).

182

Chapter4 Trees

Search trees are of great importance in algorithm design. They support almost all the
useful operations, and the logarithmic average cost is very small. Nonrecursive implemen-
tations of search trees are somewhat faster, but the recursive versions are sleeker, more
elegant, and easier to understand and debug. The problem with search trees is that their
performance depends heavily on the input being random. If this is not the case, the run-
ning time increases significantly, to the point where search trees become expensive linked
lists.

We saw several ways to deal with this problem. AVL trees work by insisting that all
nodes’ left and right subtrees differ in heights by at most one. This ensures that the tree
cannot get too deep. The operations that do not change the tree, as insertion does, can
all use the standard binary search tree code. Operations that change the tree must restore
the tree. This can be somewhat complicated, especially in the case of deletion. We showed
how to restore the tree after insertions in O(log N) time.

We also examined the splay tree. Nodes in splay trees can get arbitrarily deep, but after
every access the tree is adjusted in a somewhat mysterious manner. The net effect is that
any sequence of M operations takes O(M log N) time, which is the same as a balanced tree
would take.

B-trees are balanced M-way (as opposed to 2-way or binary) trees, which are well
suited for disks; a special case is the 2—3 tree (M = 3), which is another way to implement
balanced search trees.

In practice, the running time of all the balanced-tree schemes, while slightly faster
for searching, is worse (by a constant factor) for insertions and deletions than the simple
binary search tree, but this is generally acceptable in view of the protection being given
against easily obtained worst-case input. Chapter 12 discusses some additional search tree
data structures and provides detailed implementations.

A final note: By inserting elements into a search tree and then performing an inorder
traversal, we obtain the elements in sorted order. This gives an O(NlogN) algorithm to
sort, which is a worst-case bound if any sophisticated search tree is used. We shall see
better ways in Chapter 7, but none that have a lower time bound.

Exercises

4.1 For the tree in Figure 4.74:
a. Which node is the root?
b. Which nodes are leaves?

4.2 For each node in the tree of Figure 4.74:
Name the parent node.

. List the children.
List the siblings.

. Compute the depth.
Compute the height.

4.3 What is the depth of the tree in Figure 4.74?

4.4 Show that in a binary tree of N nodes, there are N 4 1 nul1ptr links representing
children.

oo o

Exercises

Figure 4.74 Tree for Exercises 4.1 to 4.3

4.5
4.6

4.7

4.8

4.9

Show that the maximum number of nodes in a binary tree of height h is 2"+ — 1.

A full node is a node with two children. Prove that the number of full nodes plus
one is equal to the number of leaves in a nonempty binary tree.

Suppose a binary tree has leaves I1, 1, ..., Iy at depths dy,dy, . . ., dy, respectively.
Prove that Zf\il 2% < 1 and determine when the equality is true.

Give the prefix, infix, and postfix expressions corresponding to the tree in
Figure 4.75.

a. Show the result of inserting 3, 1, 4, 6, 9, 2, 5, 7 into an initially empty binary
search tree.
b. Show the result of deleting the root.

Figure 4.75 Tree for Exercise 4.8

183

184

Chapter4 Trees

4.10

4.11

4.12

4.13

4.14

4.15

4.16

Let f(N) be the average number of full nodes in an N-node binary search tree.
a. Determine the values of f(0) and f(1).
b. Show that for N > 1

N-1

N_2+%§(f(i)+f(N—i—l))

N)=—=

JN) N

c. Show (by induction) that f(N) = (N — 2)/3 is a solution to the equation in part
(b), with the initial conditions in part (a).

d. Use the results of Exercise 4.6 to determine the average number of leaves in an
N-node binary search tree.

Write an implementation of the set class, with associated iterators using a binary
search tree. Add to each node a link to the parent node.

Write an implementation of the map class by storing a data member of type
set<Pair<KeyType,ValueType>>.

Write an implementation of the set class, with associated iterators using a binary
search tree. Add to each node a link to the next smallest and next largest node.
To make your code simpler, add a header and tail node which are not part of the
binary search tree, but help make the linked list part of the code simpler.

Suppose you want to perform an experiment to verify the problems that can be
caused by random insert/remove pairs. Here is a strategy that is not perfectly ran-
dom, but close enough. You build a tree with N elements by inserting N elements
chosen at random from the range 1 to M = @N. You then perform N? pairs of inser-
tions followed by deletions. Assume the existence of a routine, randomInteger(a,b),
which returns a uniform random integer between a and b inclusive.

a. Explain how to generate a random integer between 1 and M that is not already
in the tree (so a random insertion can be performed). In terms of N and «, what
is the running time of this operation?

b. Explain how to generate a random integer between 1 and M that is already in
the tree (so a random deletion can be performed). What is the running time of
this operation?

c. What is a good choice of &? Why?

Write a program to evaluate empirically the following strategies for removing nodes

with two children:

a. Replace with the largest node, X, in T; and recursively remove X.

b. Alternately replace with the largest node in T; and the smallest node in Tg, and
recursively remove the appropriate node.

c. Replace with either the largest node in T; or the smallest node in Tr (recursively
removing the appropriate node), making the choice randomly.

Which strategy seems to give the most balance? Which takes the least CPU time to

process the entire sequence?

Redo the binary search tree class to implement lazy deletion. Note carefully that
this affects all of the routines. Especially challenging are findMin and findMax, which
must now be done recursively.

*4.17

4.18

4.19

*4.20

4.21
4.22

4.23

424

4.25

4.26

4.27

4.28

4.29

Exercises

Prove that the depth of a random binary search tree (depth of the deepest node) is
O(log N), on average.

*a. Give a precise expression for the minimum number of nodes in an AVL tree of
height h.
b. What is the minimum number of nodes in an AVL tree of height 15?

Show the result of inserting 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty AVL tree.

Keys 1,2,...,2" — 1 are inserted in order into an initially empty AVL tree. Prove
that the resulting tree is perfectly balanced.

Write the remaining procedures to implement AVL single and double rotations.

Design a linear-time algorithm that verifies that the height information in an AVL
tree is correctly maintained and that the balance property is in order.

Write a nonrecursive function to insert into an AVL tree.
Show that the deletion algorithm in Figure 4.47 is correct

a. How many bits are required per node to store the height of a node in an N-node
AVL tree?
b. What is the smallest AVL tree that overflows an 8-bit height counter?

Write the functions to perform the double rotation without the inefficiency of doing
two single rotations.

Show the result of accessing the keys 3, 9, 1, 5 in order in the splay tree in
Figure 4.76.

Show the result of deleting the element with key 6 in the resulting splay tree for
the previous exercise.

a. Show that if all nodes in a splay tree are accessed in sequential order, the
resulting tree consists of a chain of left children.

Figure 4.76 Tree for Exercise 4.27

185

186

Chapter4 Trees

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

**b. Show that if all nodes in a splay tree are accessed in sequential order, then the

total access time is O(N), regardless of the initial tree.

Write a program to perform random operations on splay trees. Count the total
number of rotations performed over the sequence. How does the running time
compare to AVL trees and unbalanced binary search trees?

Write efficient functions that take only a pointer to the root of a binary tree, T, and
compute

a. the number of nodes in T

b. the number of leaves in T

c. the number of full nodes in T

What is the running time of your routines?

Design a recursive linear-time algorithm that tests whether a binary tree satisfies
the search tree order property at every node.

Write a recursive function that takes a pointer to the root node of a tree T and
returns a pointer to the root node of the tree that results from removing all leaves
from T.

Write a function to generate an N-node random binary search tree with distinct
keys 1 through N. What is the running time of your routine?

Write a function to generate the AVL tree of height h with fewest nodes. What is
the running time of your function?

Write a function to generate a perfectly balanced binary search tree of height h with
keys 1 through 2"! — 1. What is the running time of your function?

Write a function that takes as input a binary search tree, T, and two keys, k; and ka,
which are ordered so that k; < k;, and prints all elements X in the tree such that
k1 < Key(X) < ky. Do not assume any information about the type of keys except
that they can be ordered (consistently). Your program should run in O(K + log N)
average time, where K is the number of keys printed. Bound the running time of
your algorithm.

The larger binary trees in this chapter were generated automatically by a program.

This was done by assigning an (x, y) coordinate to each tree node, drawing a circle

around each coordinate (this is hard to see in some pictures), and connecting each

node to its parent. Assume you have a binary search tree stored in memory (perhaps
generated by one of the routines above) and that each node has two extra fields to
store the coordinates.

a. The x coordinate can be computed by assigning the inorder traversal number.
Write a routine to do this for each node in the tree.

b. The y coordinate can be computed by using the negative of the depth of the
node. Write a routine to do this for each node in the tree.

c. In terms of some imaginary unit, what will the dimensions of the picture be?
How can you adjust the units so that the tree is always roughly two-thirds as
high as it is wide?

d. Prove that using this system no lines cross, and that for any node, X, all elements
in X’s left subtree appear to the left of X and all elements in X’s right subtree
appear to the right of X.

Exercises

4.39 Write a general-purpose tree-drawing program that will convert a tree into the
following graph-assembler instructions:
a. Circle(X,Y)
b. DrawLine(i, j)
The first instruction draws a circle at (X,Y), and the second instruction connects
the ith circle to the jth circle (circles are numbered in the order drawn). You should
either make this a program and define some sort of input language or make this a
function that can be called from any program. What is the running time of your
routine?

4.40 Write a routine to list out the nodes of a binary tree in level-order. List the root, then
nodes at depth 1, followed by nodes at depth 2, and so on. You must do this in
linear time. Prove your time bound.

4.41 *a. Write a routine to perform insertion into a B-tree.
*b. Write a routine to perform deletion from a B-tree. When an item is deleted, is it
necessary to update information in the internal nodes?
*¢. Modify your insertion routine so that if an attempt is made to add into a node
that already has M entries, a search is performed for a sibling with less than M
children before the node is split.

4.42 A B*-tree of order M is a B-tree in which each interior node has between 2M/3 and
M children. Describe a method to perform insertion into a B*-tree.

4.43 Show how the tree in Figure 4.77 is represented using a child/sibling link
implementation.

4.44 Write a procedure to traverse a tree stored with child/sibling links.

4.45 Two binary trees are similar if they are both empty or both nonempty and have
similar left and right subtrees. Write a function to decide whether two binary trees
are similar. What is the running time of your function?

4.46 Two trees, T1 and T3, are isomorphic if T can be transformed into T, by swapping
left and right children of (some of the) nodes in T;. For instance, the two trees in
Figure 4.78 are isomorphic because they are the same if the children of A, B, and
G, but not the other nodes, are swapped.
a. Give a polynomial time algorithm to decide if two trees are isomorphic.

Figure 4.77 Tree for Exercise 4.43

187

Chapter4 Trees

Figure

447 *

*

Fok

4.48

4.49

4.50

4.51

4.78 Two isomorphic trees

b. What is the running time of your program (there is a linear solution)?

a. Show that via AVL single rotations, any binary search tree T; can be transformed
into another search tree T, (with the same items).

b. Give an algorithm to perform this transformation using O(Nlog N) rotations on
average.

¢. Show that this transformation can be done with O(N) rotations, worst-case.

Suppose we want to add the operation findKth to our repertoire. The opera-
tion findKth(k) returns the kth smallest item in the tree. Assume all items are
distinct. Explain how to modify the binary search tree to support this opera-
tion in O(logN) average time, without sacrificing the time bounds of any other
operation.

Since a binary search tree with N nodes has N + 1 nullptr pointers, half the space

allocated in a binary search tree for pointer information is wasted. Suppose that

if a node has a nullptr left child, we make its left child link to its inorder prede-

cessor, and if a node has a nullptr right child, we make its right child link to its

inorder successor. This is known as a threaded tree and the extra links are called

threads.

a. How can we distinguish threads from real children pointers?

b. Write routines to perform insertion and deletion into a tree threaded in the
manner described above.

c. What is the advantage of using threaded trees?

Write a program that reads a C++ source code file and outputs a list of all identifiers
(that is, variable names, but not keywords, that are not found in comments or string
constants) in alphabetical order. Each identifier should be output with a list of line
numbers on which it occurs.

Generate an index for a book. The input file consists of a set of index entries. Each
line consists of the string IX:, followed by an index entry name enclosed in braces,
followed by a page number that is enclosed in braces. Each ! in an index entry
name represents a sublevel. A | (represents the start of a range, and a |) represents
the end of the range. Occasionally, this range will be the same page. In that case,
output only a single page number. Otherwise, do not collapse or expand ranges on
your own. As an example, Figure 4.79 shows sample input and Figure 4.80 shows
the corresponding output.

References

IX: {Series|(} {2}
IX: {Series!geometric|(} {4}
IX: {Euler's constant} {4}
IX: {Series!geometric|)} {4}
IX: {Series!arithmetic|(} {4}
IX: {Series!arithmetic|)} {5}
IX: {Seriestharmonic|(} {5}
IX: {Euler's constant} {5}
IX: {Series!harmonic|)} {5}
IX: {Series|)} {5}

Figure 4.79 Sample input for Exercise 4.51

Euler's constant: 4, 5

Series: 2-5
arithmetic: 4-5
geometric: 4
harmonic: 5

Figure 4.80 Sample output for Exercise 4.51

References

More information on binary search trees, and in particular the mathematical properties of
trees, can be found in the two books by Knuth, [22] and [23].

Several papers deal with the lack of balance caused by biased deletion algorithms in
binary search trees. Hibbard’s paper [19] proposed the original deletion algorithm and
established that one deletion preserves the randomness of the trees. A complete analysis has
been performed only for trees with three nodes [20] and four nodes [5]. Eppinger’s paper
[14] provided early empirical evidence of nonrandomness, and the papers by Culberson
and Munro [10], [11] provided some analytical evidence (but not a complete proof for the
general case of intermixed insertions and deletions).

Adelson-Velskii and Landis [1] proposed AVL trees. Recently it was shown that for
AVL trees, if rebalancing is performed only on insertions, and not on deletions, under
certain circumstances the resulting structure still maintains a depth of O(log M) where M
is the number of insertions [28]. Simulation results for AVL trees, and variants in which
the height imbalance is allowed to be at most k for various values of k, are presented in
[21]. Analysis of the average search cost in AVL trees is incomplete, but some results are
contained in [24].

[3] and [8] considered self-adjusting trees like the type in Section 4.5.1. Splay trees are
described in [29].

B-trees first appeared in [6]. The implementation described in the original paper allows
data to be stored in internal nodes as well as leaves. The data structure we have described

189

Chapter4 Trees

is sometimes known as a B -tree. A survey of the different types of B-trees is presented in
[9]. Empirical results of the various schemes are reported in [17]. Analysis of 2-3 trees and
B-trees can be found in [4], [13], and [32].

Exercise 4.17 is deceptively difficult. A solution can be found in [15]. Exercise 4.29

is from [32]. Information on B*-trees, described in Exercise 4.42, can be found in [12].
Exercise 4.46 is from [2]. A solution to Exercise 4.47 using 2N — 6 rotations is given in
[30]. Using threads, a la Exercise 4.49, was first proposed in [27]. k-d trees, which handle
multidimensional data, were first proposed in [7] and are discussed in Chapter 12.

Other popular balanced search trees are red-black trees [18] and weight-balanced trees

[26]. More balanced-tree schemes can be found in the books [16] and [25].

1.

2.

11.

12.

13.

14.

15.

16.

17.

G. M. Adelson-Velskii and E. M. Landis, “An Algorithm for the Organization of Informa-
tion,” Soviet. Mat. Doklady, 3 (1962), 1259-1263.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

. B. Allen and J. I. Munro, “Self Organizing Search Trees,” Journal of the ACM, 25 (1978),

526-535.

. R A. Baeza-Yates, “Expected Behaviour of BT -trees under Random Insertions,” Acta Infor-

matica, 26 (1989), 439-471.

. R. A. Baeza-Yates, “A Trivial Algorithm Whose Analysis Isn't: A Continuation,” BIT, 29

(1989), 88-113.

. R. Bayer and E. M. McCreight, “Organization and Maintenance of Large Ordered Indices,”

Acta Informatica, 1 (1972), 173-189.

. J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,”

Communications of the ACM, 18 (1975), 509-517.

. J. R. Bitner, “Heuristics that Dynamically Organize Data Structures,” SIAM Journal on

Computing, 8 (1979), 82-110.

. D. Comer, “The Ubiquitous B-tree,” Computing Surveys, 11 (1979), 121-137.
10.

J. Culberson and J. 1. Munro, “Explaining the Behavior of Binary Search Trees under
Prolonged Updates: A Model and Simulations,” Computer Journal, 32 (1989), 68-75.

J. Culberson and J. I. Munro, “Analysis of the Standard Deletion Algorithms in Exact Fit
Domain Binary Search Trees,” Algorithmica, 5 (1990), 295-311.

K. Culik, T. Ottman, and D. Wood, “Dense Multiway Trees,” ACM Transactions on Database
Systems, 6 (1981), 486-512.

B. Eisenbath, N. Ziviana, G. H. Gonnet, K. Melhorn, and D. Wood, “The Theory of Fringe
Analysis and Its Application to 2-3 Trees and B-trees,” Information and Control, 55 (1982),
125-174.

J. L. Eppinger, “An Empirical Study of Insertion and Deletion in Binary Search Trees,”
Communications of the ACM, 26 (1983), 663-669.

P. Flajolet and A. Odlyzko, “The Average Height of Binary Trees and Other Simple Trees,”
Journal of Computer and System Sciences, 25 (1982), 171-213.

G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, 2d ed.,
Addison-Wesley, Reading, Mass., 1991.

E. Gudes and S. Tsur, “Experiments with B-tree Reorganization,” Proceedings of ACM
SIGMOD Symposium on Management of Data (1980), 200-206.

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

References

. L.J. Guibas and R. Sedgewick, “A Dichromatic Framework for Balanced Trees,” Proceedings
of the Nineteenth Annual IEEE Symposium on Foundations of Computer Science (1978), 8-21.
T. H. Hibbard, “Some Combinatorial Properties of Certain Trees with Applications to
Searching and Sorting,” Journal of the ACM, 9 (1962), 13-28.

A. T. Jonassen and D. E. Knuth, “A Trivial Algorithm Whose Analysis Isn't,” Journal of
Computer and System Sciences, 16 (1978), 301-322.

P L. Karlton, S. H. Fuller, R. E. Scroggs, and E. B. Kaehler, “Performance of Height Balanced
Trees,” Communications of the ACM, 19 (1976), 23-28.

D. E. Knuth, The Art of Computer Programming: Vol. 1: Fundamental Algorithms, 3d ed.,
Addison-Wesley, Reading, Mass., 1997.

D. E. Knuth, The Art of Computer Programming: Vol. 3: Sorting and Searching, 2d ed., Addison-
Wesley, Reading, Mass., 1998.

K. Melhorn, “A Partial Analysis of Height-Balanced Trees under Random Insertions and
Deletions,” SIAM Journal of Computing, 11 (1982), 748-760.

K. Melhorn, Data Structures and Algorithms 1: Sorting and Searching, Springer-Verlag, Berlin,
1984.

J. Nievergelt and E. M. Reingold, “Binary Search Trees of Bounded Balance,” SIAM Journal
on Computing, 2 (1973), 33-43.

A. J. Perlis and C. Thornton, “Symbol Manipulation in Threaded Lists,” Communications of
the ACM, 3 (1960), 195-204.

S. Sen and R. E. Tarjan, “Deletion Without Rebalancing in Balanced Binary Trees,”
Proceedings of the Twentieth Symposium on Discrete Algorithms (2010), 1490-1499.

D. D. Sleator and R. E. Tarjan, “Self-adjusting Binary Search Trees,” Journal of the ACM, 32
(1985), 652-686.

D. D. Sleator, R. E. Tarjan, and W. P. Thurston, “Rotation Distance, Triangulations, and
Hyperbolic Geometry,” Journal of the AMS (1988), 647-682.

R. E. Tarjan, “Sequential Access in Splay Trees Takes Linear Time,” Combinatorica, 5 (1985),
367-378.

. A. C. Yao, “On Random 2-3 Trees,” Acta Informatica, 9 (1978), 159-170.

191

This page intentionally left blank

. cuarter 5

Hashing

In Chapter 4 we discussed the search tree ADT, which allowed various operations on a set
of elements. In this chapter, we discuss the hash table ADT, which supports only a subset
of the operations allowed by binary search trees.

The implementation of hash tables is frequently called hashing. Hashing is a tech-
nique used for performing insertions, deletions, and finds in constant average time. Tree
operations that require any ordering information among the elements are not supported
efficiently. Thus, operations such as findMin, findMax, and the printing of the entire table in
sorted order in linear time are not supported.

The central data structure in this chapter is the hash table. We will. . .

* See several methods of implementing the hash table.
» Compare these methods analytically.
 Show numerous applications of hashing.

» Compare hash tables with binary search trees.

5.1 General Idea

The ideal hash table data structure is merely an array of some fixed size containing the
items. As discussed in Chapter 4, generally a search is performed on some part (that is,
data member) of the item. This is called the key. For instance, an item could consist of a
string (that serves as the key) and additional data members (for instance, a name that is part
of a large employee structure). We will refer to the table size as TableSize, with the under-
standing that this is part of a hash data structure and not merely some variable floating
around globally. The common convention is to have the table run from 0 to TableSize — 1,
we will see why shortly.

Each key is mapped into some number in the range O to TableSize — 1 and placed
in the appropriate cell. The mapping is called a hash function, which ideally should be
simple to compute and should ensure that any two distinct keys get different cells. Since
there are a finite number of cells and a virtually inexhaustible supply of keys, this is clearly
impossible, and thus we seek a hash function that distributes the keys evenly among the
cells. Figure 5.1 is typical of a perfect situation. In this example, john hashes to 3, phil
hashes to 4, dave hashes to 6, and mary hashes to 7.

193

194

Chapter 5 Hashing

0
1
2
3 john 25000
4 phil 31250
5
6 dave 27500
7 mary 28200
8
9

Figure 5.1 An ideal hash table

This is the basic idea of hashing. The only remaining problems deal with choosing a
function, deciding what to do when two keys hash to the same value (this is known as a
collision), and deciding on the table size.

5.2 Hash Function

If the input keys are integers, then simply returning Key mod TableSize is generally a rea-
sonable strategy, unless Key happens to have some undesirable properties. In this case, the
choice of hash function needs to be carefully considered. For instance, if the table size
is 10 and the keys all end in zero, then the standard hash function is a bad choice. For
reasons we shall see later, and to avoid situations like the one above, it is often a good idea
to ensure that the table size is prime. When the input keys are random integers, then this
function is not only very simple to compute but also distributes the keys evenly.

Usually, the keys are strings; in this case, the hash function needs to be chosen carefully.

One option is to add up the ascu values of the characters in the string. The routine in
Figure 5.2 implements this strategy.

The hash function depicted in Figure 5.2 is simple to implement and computes an
answer quickly. However, if the table size is large, the function does not distribute the keys
well. For instance, suppose that TableSize = 10,007 (10,007 is a prime number). Suppose
all the keys are eight or fewer characters long. Since an asc character has an integer value
that is always at most 127, the hash function typically can only assume values between 0
and 1,016, which is 127 * 8. This is clearly not an equitable distribution!

Another hash function is shown in Figure 5.3. This hash function assumes that Key has
at least three characters. The value 27 represents the number of letters in the English alpha-
bet, plus the blank, and 729 is 272. This function examines only the first three characters,
but if these are random and the table size is 10,007, as before, then we would expect a

5.2 Hash Function

int hash(const string & key, int tableSize)

{
int hashVal = 0;

for(char ch : key)
hashVal += ch;

return hashVal % tableSize;

O 0o ~ O Lt A W N =

}

Figure 5.2 A simple hash function

1 int hash(const string & key, int tableSize)

2 A

3 return (key[0] + 27 * key[1] + 729 * key[2]) % tableSize;
4}

Figure 5.3 Another possible hash function—not too good

reasonably equitable distribution. Unfortunately, English is not random. Although there
are 26> = 17,576 possible combinations of three characters (ignoring blanks), a check
of a reasonably large online dictionary reveals that the number of different combinations
is actually only 2,851. Even if none of these combinations collide, only 28 percent of the
table can actually be hashed to. Thus this function, although easily computable, is also not
appropriate if the hash table is reasonably large.

Figure 5.4 shows a third attempt at a hash function. This hash function involves
all characters in the key and can generally be expected to distribute well (it computes
Zﬁ“(v)&ze_l Key[KeySize — i — 1] - 37" and brings the result into proper range). The code
computes a polynomial function (of 37) by use of Horner’ rule. For instance, another way
of computing hy, = ko + 37ky + 37%k; is by the formula by, = ((ky) % 37 + k1) * 37 + ko.
Horner’s rule extends this to an nth degree polynomial.

1 /**

2 * A hash routine for string objects.
3 */

4 unsigned int hash(const string & key, int tableSize)
5 A

6 unsigned int hashVal = 0;

7

8 for(char ch : key)

9 hashVal = 37 * hashVal + ch;
10

11 return hashVal % tableSize;
12}

Figure 5.4 A good hash function

195

Chapter 5 Hashing

The hash function takes advantage of the fact that overflow is allowed and uses
unsigned int to avoid introducing a negative number.

The hash function described in Figure 5.4 is not necessarily the best with respect to
table distribution, but it does have the merit of extreme simplicity and is reasonably fast. If
the keys are very long, the hash function will take too long to compute. A common practice
in this case is not to use all the characters. The length and properties of the keys would then
influence the choice. For instance, the keys could be a complete street address. The hash
function might include a couple of characters from the street address and perhaps a couple
of characters from the city name and zip code. Some programmers implement their hash
function by using only the characters in the odd spaces, with the idea that the time saved
computing the hash function will make up for a slightly less evenly distributed function.

The main programming detail left is collision resolution. If, when an element is
inserted, it hashes to the same value as an already inserted element, then we have a collision
and need to resolve it. There are several methods for dealing with this. We will discuss two
of the simplest: separate chaining and open addressing; then we will look at some more
recently discovered alternatives.

5.3 Separate Chaining

The first strategy, commonly known as separate chaining, is to keep a list of all elements
that hash to the same value. We can use the Standard Library list implementation. If space
is tight, it might be preferable to avoid their use (since these lists are doubly linked and
waste space). We assume for this section that the keys are the first 10 perfect squares and
that the hashing function is simply hash(x) = x mod 10. (The table size is not prime but
is used here for simplicity.) Figure 5.5 shows the resulting separate chaining hash table.
To perform a search, we use the hash function to determine which list to traverse. We
then search the appropriate list. To perform an insert, we check the appropriate list to see
whether the element is already in place (if duplicates are expected, an extra data member is

@

]
H

|4 4=
[16]4=

O 00 1 O L AW N = O
|
||-| ||-| ll-l 'I-l
W N

1491519 [3=

Figure 5.5 A separate chaining hash table

5.3 Separate Chaining

1 template <typename HashedObj>
2 class HashTable
3 {
4 public:
5 explicit HashTable(int size = 101);
6
7 bool contains(const HashedObj & x) const;
8
9 void makeEmpty();
10 bool insert(const HashedObj & x);
11 bool insert(HashedObj && x);
12 bool remove(const HashedObj & x);
13
14 private:
15 vector<list<HashedObj>> thelists; // The array of Lists
16 int currentSize;
17
18 void rehash();
19 size_t myhash(const HashedObj & x) const;
20 }s

Figure 5.6 Type declaration for separate chaining hash table

usually kept, and this data member would be incremented in the event of a match). If the
element turns out to be new, it can be inserted at the front of the list, since it is convenient
and also because frequently it happens that recently inserted elements are the most likely
to be accessed in the near future.

The class interface for a separate chaining implementation is shown in Figure 5.6. The
hash table stores an array of linked lists, which are allocated in the constructor.

The class interface illustrates a syntax point: Prior to C++11, in the declaration of
thelists, a space was required between the two >s; since >> is a C++ token, and because it
is longer than >, >> would be recognized as the token. In C++11, this is no longer the case.

Just as the binary search tree works only for objects that are Comparab1e, the hash tables
in this chapter work only for objects that provide a hash function and equality operators
(operator== or operator!=, or possibly both).

Instead of requiring hash functions that take both the object and the table size as
parameters, we have our hash functions take only the object as the parameter and return
an appropriate integral type. The standard mechanism for doing this uses function objects,
and the protocol for hash tables was introduced in C++11. Specifically, in C++11, hash
functions can be expressed by the function object template:

template <typename Key>
class hash
{
public:
size_t operator() (const Key & k) const;

}s

197

Chapter 5 Hashing

Default implementations of this template are provided for standard types such as int
and string; thus, the hash function described in Figure 5.4 could be implemented as

template <>
class hash<string>
{
public:
size_t operator()(const string & key)

{
size_t hashVal = 0;

for(char ch : key)
hashVal = 37 * hashVal + ch;

return hashVal;

}s

The type size t is an unsigned integral type that represents the size of an object;
therefore, it is guaranteed to be able to store an array index. A class that implements a
hash table algorithm can then use calls to the generic hash function object to generate an
integral type size_t and then scale the result into a suitable array index. In our hash tables,
this is manifested in private member function myhash, shown in Figure 5.7.

Figure 5.8 illustrates an Employee class that can be stored in the generic hash
table, using the name member as the key. The Employee class implements the HashedObj
requirements by providing equality operators and a hash function object.

The code to implement makeEmpty, contains, and remove is shown in Figure 5.9.

Next comes the insertion routine. If the item to be inserted is already present, then we
do nothing; otherwise, we place it in the list (see Fig. 5.10). The element can be placed
anywhere in the list; using push_back is most convenient in our case. whichList is a reference
variable; see Section 1.5.2 for a discussion of this use of reference variables.

Any scheme could be used besides linked lists to resolve the collisions; a binary search
tree or even another hash table would work, but we expect that if the table is large and the
hash function is good, all the lists should be short, so basic separate chaining makes no
attempt to try anything complicated.

We define the load factor, A, of a hash table to be the ratio of the number of elements
in the hash table to the table size. In the example above, A = 1.0. The average length of a
list is A. The effort required to perform a search is the constant time required to evaluate
the hash function plus the time to traverse the list. In an unsuccessful search, the number

size_t myhash(const HashedObj & x) const

{
static hash<HashedObj> hf;
return hf(x) % theLists.size();

b N W N =

}

Figure 5.7 myHash member function for hash tables

5.3 Separate Chaining

1 // Example of an Employee class

2 class Employee

3

4 public:

5 const string & getName() const

6 { return name; }

7

8 bool operator==(const Employee & rhs) const
9 { return getName() == rhs.getName(); }
10 bool operator!=(const Employee & rhs) const
11 { return !(*this == rhs; }

12

13 // Additional public members not shown
14

15 private:

16 string name;

17 double salary;

18 int seniority;

19
20 // Additional private members not shown
21}
22
23 template<>
24 class hash<Employee>
25 |
26 pubTlic:
27 size t operator()(const Employee & item)
28 {
29 static hash<string> hf;
30 return hf(item.getName());
31 }
32 b

Figure 5.8 Example of a class that can be used as a HashedObj

of nodes to examine is A on average. A successful search requires that about 1 + (A/2)
links be traversed. To see this, notice that the list that is being searched contains the one
node that stores the match plus zero or more other nodes. The expected number of “other
nodes” in a table of N elements and M lists is (N — 1)/M = A — 1/M, which is essentially X,
since M is presumed large. On average, half the “other nodes” are searched, so combined
with the matching node, we obtain an average search cost of 1 + A /2 nodes. This analysis
shows that the table size is not really important but the load factor is. The general rule
for separate chaining hashing is to make the table size about as large as the number of
elements expected (in other words, let A & 1). In the code in Figure 5.10, if the load
factor exceeds 1, we expand the table size by calling rehash at line 10. rehash is discussed
in Section 5.5. It is also a good idea, as mentioned before, to keep the table size prime to
ensure a good distribution.

199

200

Chapter 5 Hashing

o~ O LW N =

| S I NG T NG T N R e e T e T T e T o T e Sy
W N = O W o~ L A WK = O O

24

Figure 5.9

0 N O LA W N =

—
N = O© O

13

void makeEmpty()

{

for(auto & thisList : thelists)
thisList.clear();

bool contains(const HashedObj & x) const

{

auto & whichList = thelLists[myhash(x)];
return find(begin(whichList), end(whichList), x) != end(whichList);

bool remove(const HashedObj & x)

{

}

auto & whichList = theLists[myhash(x)];
auto itr = find(begin(whichList), end(whichList), x);

if(itr == end(whichList))
return false;

whichList.erase(itr);

--currentSize;
return true;

makeEmpty, contains, and remove routines for separate chaining hash table

bool insert(const HashedObj & x)

{

}

auto & whichList = thelLists[myhash(x) 1;

if(find(begin(whichList), end(whichList), x) != end(whichList))
return false;

whichList.push_back(x);

// Rehash; see Section 5.5
if(++currentSize > thelLists.size())

rehash();

return true;

Figure 5.10 insert routine for separate chaining hash table

5.4 Hash Tables without Linked Lists

5.4 Hash Tables without Linked Lists

Separate chaining hashing has the disadvantage of using linked lists. This could slow
the algorithm down a bit because of the time required to allocate new cells (especially
in other languages) and essentially requires the implementation of a second data struc-
ture. An alternative to resolving collisions with linked lists is to try alternative cells until
an empty cell is found. More formally, cells ho(x), h1(x), ha(x), ... are tried in succession,
where hj(x) = (hash(x) + f(i)) mod TableSize, with f(0) = 0. The function, f, is the col-
lision resolution strategy. Because all the data go inside the table, a bigger table is needed
in such a scheme than for separate chaining hashing. Generally, the load factor should be
below A = 0.5 for a hash table that doesnt use separate chaining. We call such tables
probing hash tables. We now look at three common collision resolution strategies.

5.4.1 Linear Probing

In linear probing, f is a linear function of i, typically f(i) = i. This amounts to trying cells
sequentially (with wraparound) in search of an empty cell. Figure 5.11 shows the result of
inserting keys {89, 18, 49, 58, 69} into a hash table using the same hash function as before
and the collision resolution strategy, f(i) = i.

The first collision occurs when 49 is inserted; it is put in the next available spot, namely,
spot 0, which is open. The key 58 collides with 18, 89, and then 49 before an empty cell
is found three away. The collision for 69 is handled in a similar manner. As long as the
table is big enough, a free cell can always be found, but the time to do so can get quite
large. Worse, even if the table is relatively empty, blocks of occupied cells start forming.
This effect, known as primary clustering, means that any key that hashes into the cluster
will require several attempts to resolve the collision, and then it will add to the cluster.

Although we will not perform the calculations here, it can be shown that the expected
number of probes using linear probing is roughly %(1 4+ 1/(1 — 2)?) for insertions and

Empty Table After 89 After 18 After 49 After 58 After 69

0 49 49 49
1 58 58
2 69
3
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

Figure 5.11 Hash table with linear probing, after each insertion

201

202

Chapter 5 Hashing

unsuccessful searches, and %(1 4+ 1/(1 — &) for successful searches. The calculations
are somewhat involved. It is easy to see from the code that insertions and unsuccessful
searches require the same number of probes. A moment’s thought suggests that, on average,
successful searches should take less time than unsuccessful searches.

The corresponding formulas, if clustering is not a problem, are fairly easy to derive.
We will assume a very large table and that each probe is independent of the previous
probes. These assumptions are satisfied by a random collision resolution strategy and are
reasonable unless A is very close to 1. First, we derive the expected number of probes in
an unsuccessful search. This is just the expected number of probes until we find an empty
cell. Since the fraction of empty cells is 1 — A, the number of cells we expect to probe is
1/(1 — A). The number of probes for a successful search is equal to the number of probes
required when the particular element was inserted. When an element is inserted, it is done
as a result of an unsuccessful search. Thus, we can use the cost of an unsuccessful search
to compute the average cost of a successful search.

The caveat is that A changes from O to its current value, so that earlier insertions are
cheaper and should bring the average down. For instance, in the table in Figure 5.11,
A = 0.5, but the cost of accessing 18 is determined when 18 is inserted. At that point,
A = 0.2. Since 18 was inserted into a relatively empty table, accessing it should be easier
than accessing a recently inserted element, such as 69. We can estimate the average by
using an integral to calculate the mean value of the insertion time, obtaining

| 1 1
I(A):—/ dx=—1n
Ao 1—x Ao l—2

These formulas are clearly better than the corresponding formulas for linear probing.
Clustering is not only a theoretical problem but actually occurs in real implementations.

Figure 5.12 compares the performance of linear probing (dashed curves) with what
would be expected from more random collision resolution. Successful searches are indi-
cated by an S, and unsuccessful searches and insertions are marked with U and I,
respectively.

If A = 0.75, then the formula above indicates that 8.5 probes are expected for an
insertion in linear probing. If . = 0.9, then 50 probes are expected, which is unreasonable.
This compares with 4 and 10 probes for the respective load factors if clustering were not
a problem. We see from these formulas that linear probing can be a bad idea if the table is
expected to be more than half full. If A = 0.5, however, only 2.5 probes are required on
average for insertion, and only 1.5 probes are required, on average, for a successful search.

5.4.2 Quadratic Probing

Quadpratic probing is a collision resolution method that eliminates the primary clustering
problem of linear probing. Quadratic probing is what you would expect—the collision
function is quadratic. The popular choice is f(i) = i?. Figure 5.13 shows the resulting hash
table with this collision function on the same input used in the linear probing example.
When 49 collides with 89, the next position attempted is one cell away. This cell is
empty, so 49 is placed there. Next, 58 collides at position 8. Then the cell one away is

5.4 Hash Tables without Linked Lists

15.0

12.0

9.0

6.0

3.0

0.0

.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

Figure 5.12 Number of probes plotted against load factor for linear probing (dashed) and
random strategy (S is successful search, U is unsuccessful search, and I is insertion)

Empty Table After 89 After 18 After49 After 58 After 69

0 49 49 49
1
2 58 58
3 69
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

Figure 5.13 Hash table with quadratic probing, after each insertion

tried, but another collision occurs. A vacant cell is found at the next cell tried, which is
22 = 4 away. 58 is thus placed in cell 2. The same thing happens for 69.

For linear probing, it is a bad idea to let the hash table get nearly full, because per-
formance degrades. For quadratic probing, the situation is even more drastic: There is no
guarantee of finding an empty cell once the table gets more than half full, or even before
the table gets half full if the table size is not prime. This is because at most half of the table
can be used as alternative locations to resolve collisions.

Indeed, we prove now that if the table is half empty and the table size is prime, then
we are always guaranteed to be able to insert a new element.

203

204

Chapter 5 Hashing

Theorem 5.1
If quadratic probing is used, and the table size is prime, then a new element can always
be inserted if the table is at least half empty.

Proof

Let the table size, TableSize, be an (odd) prime greater than 3. We show that the first
[TableSize/2] alternative locations (including the initial location ho(x)) are all distinct.
Two of these locations are h(x) 4 i* (mod TableSize) and h(x) + j> (mod TableSize),
where 0 < i,j < |TableSize/2]. Suppose, for the sake of contradiction, that these
locations are the same, but i # j. Then

h(x) +i* = h(x) + 2 (mod TableSize)

2 = j? (mod TableSize)
?—i?=0 (mod TableSize)
i—)i+)p=0 (mod TableSize)

Since TableSize is prime, it follows that either (i — j) or (i + j) is equal to 0 (mod
TableSize). Since i and j are distinct, the first option is not possible. Since 0 < i,j <
| TableSize/2], the second option is also impossible. Thus, the first [TableSize/2] alter-
native locations are distinct. If at most | TableSize/2] positions are taken, then an empty
spot can always be found.

If the table is even one more than half full, the insertion could fail (although this is
extremely unlikely). Therefore, it is important to keep this in mind. It is also crucial that
the table size be prime.! If the table size is not prime, the number of alternative locations
can be severely reduced. As an example, if the table size were 16, then the only alternative
locations would be at distances 1, 4, or 9 away.

Standard deletion cannot be performed in a probing hash table, because the cell might
have caused a collision to go past it. For instance, if we remove 89, then virtually all
the remaining find operations will fail. Thus, probing hash tables require lazy deletion,
although in this case there really is no laziness implied.

The class interface required to implement probing hash tables is shown in Figure 5.14.
Instead of an array of lists, we have an array of hash table entry cells. The nested class
HashEntry stores the state of an entry in the info member; this state is either ACTIVE, EMPTY,
or DELETED.

We use a standard enumerated type.

enum EntryType { ACTIVE, EMPTY, DELETED };

Constructing the table (Fig. 5.15) consists of setting the info member to EMPTY for
each cell. contains(x), shown in Figure 5.16, invokes private member functions isActive
and findPos. The private member function findPos performs the collision resolution. We
ensure in the insert routine that the hash table is at least twice as large as the number
of elements in the table, so quadratic resolution will always work. In the implementation

U1f the table size is a prime of the form 4k + 3, and the quadratic collision resolution strategy f(i) = i is
used, then the entire table can be probed. The cost is a slightly more complicated routine.

5.4 Hash Tables without Linked Lists

1 template <typename HashedObj>
2 class HashTable
3
4 public:
5 explicit HashTable(int size = 101);
6
7 bool contains(const HashedObj & x) const;
8
9 void makeEmpty();
10 bool insert(const HashedObj & x);
11 bool insert(HashedObj && x);
12 bool remove(const HashedObj & x);
13
14 enum EntryType { ACTIVE, EMPTY, DELETED };
15
16 private:
17 struct HashEntry
18 {
19 HashedObj element;
20 EntryType info;
21
22 HashEntry(const HashedObj & e = HashedObj{ }, EntryType i = EMPTY)
23 : element{ e }, info{ i } { }
24 HashEntry(HashedObj && e, EntryType i = EMPTY)
25 : element{ std::move(e) }, info{ i } { }
26 }s
27
28 vector<HashEntry> array;
29 int currentSize;
30
31 bool isActive(int currentPos) const;
32 int findPos(const HashedObj & x) const;
33 void rehash();
34 size t myhash(const HashedObj & x) const;
35 };

Figure 5.14 Class interface for hash tables using probing strategies, including the nested
HashEntry class

in Figure 5.16, elements that are marked as deleted count as being in the table. This can
cause problems, because the table can get too full prematurely. We shall discuss this item
presently.

Lines 12 to 15 represent the fast way of doing quadratic resolution. From the definition
of the quadratic resolution function, f(i) = f(i — 1) + 2i — 1, so the next cell to try is a
distance from the previous cell tried and this distance increases by 2 on successive probes.

205

206 Chapter 5 Hashing

explicit HashTable(int size = 101) : array(nextPrime(size))
{ makeEmpty(); }

void makeEmpty()
{
currentSize = 0;
for(auto & entry : array)
entry.info = EMPTY;

O 0o ~ & Lt A W N =

}

Figure 5.15 Routines to initialize quadratic probing hash table

1 bool contains(const HashedObj & x) const

2 { return isActive(findPos(x)); }

3

4 int findPos(const HashedObj & x) const

5 {

6 int offset = 1;

7 int currentPos = myhash(x);

8

9 while(array[currentPos].info != EMPTY &&
10 array[currentPos].element != x)
11 {

12 currentPos += offset; // Compute ith probe
13 offset += 2;

14 if(currentPos >= array.size())

15 currentPos -= array.size();

16 }

17

18 return currentPos;

19 }

20

21 bool isActive(int currentPos) const

22 { return array[currentPos].info == ACTIVE; }

Figure 5.16 contains routine (and private helpers) for hashing with quadratic probing

If the new location is past the array, it can be put back in range by subtracting TableSize.
This is faster than the obvious method, because it avoids the multiplication and division
that seem to be required. An important warning: The order of testing at lines 9 and 10 is
important. Don't switch it!

The final routine is insertion. As with separate chaining hashing, we do nothing if x is
already present. It is a simple modification to do something else. Otherwise, we place it at
the spot suggested by the findPos routine. The code is shown in Figure 5.17. If the load

5.4 Hash Tables without Linked Lists

1 bool insert(const HashedObj & x)

2 {

3 // Insert x as active

4 int currentPos = findPos(x);

5 if(isActive(currentPos))

6 return false;

7

8 array[currentPos].element = x;
9 array[currentPos].info = ACTIVE;
10

11 // Rehash; see Section 5.5

12 if(++currentSize > array.size() / 2)
13 rehash();

14

15 return true;

16 }

17

18 bool remove(const HashedObj & x)

19 {

20 int currentPos = findPos(x);

21 if(!isActive(currentPos))

22 return false;

23

24 array[currentPos].info = DELETED;
25 return true;

26 }

Figure 5.17 Some insert and remove routines for hash tables with quadratic probing

factor exceeds 0.5, the table is full and we enlarge the hash table. This is called rehashing
and is discussed in Section 5.5. Figure 5.17 also shows remove.

Although quadratic probing eliminates primary clustering, elements that hash to the
same position will probe the same alternative cells. This is known as secondary clustering.
Secondary clustering is a slight theoretical blemish. Simulation results suggest that it gen-
erally causes less than an extra half probe per search. The following technique eliminates
this, but does so at the cost of computing an extra hash function.

5.4.3 Double Hashing

The last collision resolution method we will examine is double hashing. For double hash-
ing, one popular choice is f(i) = i- hashy (x). This formula says that we apply a second hash
function to x and probe at a distance hashy (x), 2hash, (x), . .., and so on. A poor choice of
hash> (x) would be disastrous. For instance, the obvious choice hash;(x) = x mod 9 would
not help if 99 were inserted into the input in the previous examples. Thus, the function
must never evaluate to zero. It is also important to make sure all cells can be probed (this
is not possible in the example below, because the table size is not prime). A function such

207

208

Chapter 5 Hashing

Empty Table After 89 After 18 After 49 After 58 After 69

0 69
1
2
3 58 58
4
5
6 49 49 49
7
8 18 18 18 18
9 89 89 89 89 89

Figure 5.18 Hash table with double hashing, after each insertion

as hashy(x) = R — (x mod R), with R a prime smaller than TableSize, will work well. If we
choose R = 7, then Figure 5.18 shows the results of inserting the same keys as before.

The first collision occurs when 49 is inserted. hash,(49) = 7 —0 = 7, so 49 is inserted
in position 6. hashy(58) = 7 — 2 = 5, so 58 is inserted at location 3. Finally, 69 collides
and is inserted at a distance hash,(69) = 7—6 = 1 away. If we tried to insert 60 in position
0, we would have a collision. Since hash,(60) = 7 — 4 = 3, we would then try positions
3,6, 9, and then 2 until an empty spot is found. It is generally possible to find some bad
case, but there are not too many here.

As we have said before, the size of our sample hash table is not prime. We have done
this for convenience in computing the hash function, but it is worth seeing why it is impor-
tant to make sure the table size is prime when double hashing is used. If we attempt to
insert 23 into the table, it would collide with 58. Since hashy(23) = 7 — 2 = 5, and the
table size is 10, we essentially have only one alternative location, and it is already taken.
Thus, if the table size is not prime, it is possible to run out of alternative locations pre-
maturely. However, if double hashing is correctly implemented, simulations imply that the
expected number of probes is almost the same as for a random collision resolution strat-
egy. This makes double hashing theoretically interesting. Quadratic probing, however, does
not require the use of a second hash function and is thus likely to be simpler and faster in
practice, especially for keys like strings whose hash functions are expensive to compute.

5.5 Rehashing

If the table gets too full, the running time for the operations will start taking too long,
and insertions might fail for open addressing hashing with quadratic resolution. This can
happen if there are too many removals intermixed with insertions. A solution, then, is
to build another table that is about twice as big (with an associated new hash function)
and scan down the entire original hash table, computing the new hash value for each
(nondeleted) element and inserting it in the new table.

5.5 Rehashing

0 6
1 15
2
3 24
4
5
6 13

Figure 5.19 Hash table with linear probing with input 13, 15, 6, 24

As an example, suppose the elements 13, 15, 24, and 6 are inserted into a linear
probing hash table of size 7. The hash function is h(x) = x mod 7. The resulting hash
table appears in Figure 5.19.

If 23 is inserted into the table, the resulting table in Figure 5.20 will be over 70 percent
full. Because the table is so full, a new table is created. The size of this table is 17, because
this is the first prime that is twice as large as the old table size. The new hash function is
then h(x) = x mod 17. The old table is scanned, and elements 6, 15, 23, 24, and 13 are
inserted into the new table. The resulting table appears in Figure 5.21.

This entire operation is called rehashing. This is obviously a very expensive operation;
the running time is O(N), since there are N elements to rehash and the table size is roughly
2N, but it is actually not all that bad, because it happens very infrequently. In particular,
there must have been N/2 insertions prior to the last rehash, so it essentially adds a con-
stant cost to each insertion. This is why the new table is made twice as large as the old
table. If this data structure is part of the program, the effect is not noticeable. On the other
hand, if the hashing is performed as part of an interactive system, then the unfortunate
user whose insertion caused a rehash could see a slowdown.

0 6

1 15
2 23
3 24
4

5

6 13

Figure 5.20 Hash table with linear probing after 23 is inserted

209

210

Chapter 5 Hashing

0

1

2

3

4

5

6 6
7 23
8 24
9

10

11

12

13 13
14

15 15
16

Figure 5.21 Hash table after rehashing

Rehashing can be implemented in several ways with quadratic probing. One alternative
is to rehash as soon as the table is half full. The other extreme is to rehash only when an
insertion fails. A third, middle-of-the-road strategy is to rehash when the table reaches a
certain load factor. Since performance does degrade as the load factor increases, the third
strategy, implemented with a good cutoff, could be best.

Rehashing for separate chaining hash tables is similar. Figure 5.22 shows that rehash-
ing is simple to implement and provides an implementation for separate chaining
rehashing.

5.6 Hash Tables in the Standard Library

In C++11, the Standard Library includes hash table implementations of sets and maps—
namely, unordered_set and unordered map, which parallel set and map. The items in the
ordered_set (or the keys in the unordered map) must provide an overloaded operator== and
a hash function, as described earlier, in Section 5.3. Just as the set and map templates can

5.6 Hash Tables in the Standard Library

1 /**

2 * Rehashing for quadratic probing hash table.
3 */

4 void rehash()

5 {

6 vector<HashEntry> oldArray = array;

7

8 // Create new double-sized, empty table
9 array.resize(nextPrime(2 * oldArray.size()));
10 for(auto & entry : array)

11 entry.info = EMPTY;

12

13 // Copy table over

14 currentSize = 0;

15 for(auto & entry : oldArray)

16 if(entry.info == ACTIVE)

17 insert(std::move(entry.element));
18 }

19

20 /**

21 * Rehashing for separate chaining hash table.
22 */

23 void rehash()

24 {

25 vector<list<HashedObj>> oldLists = thelists;
26

27 // Create new double-sized, empty table
28 theLists.resize(nextPrime(2 * thelLists.size()));
29 for(auto & thisList : thelLists)

30 thisList.clear();

31

32 // Copy table over

33 currentSize = 0;

34 for(auto & thisList : oldLists)

35 for(auto & x : thislList)

36 insert(std::move(x));

37 }

Figure 5.22 Rehashing for both separate chaining hash tables and probing hash tables

also be instantiated with a function object that provides (or overrides a default) comparison
function, unordered_set and unordered map can be instantiated with function objects that
provide a hash function and equality operator. Thus, for example, Figure 5.23 illustrates
how an unordered set of case-insensitive strings can be maintained, assuming that some
string operations are implemented elsewhere.

211

212

Chapter 5 Hashing

1 class CaselnsensitiveStringHash

2

3 pubTic:

4 size_t operator() (const string & s) const

5 {

6 static hash<string> hf;

7 return hf(tolLower(s)); // tolLower implemented elsewhere
8 }

9

10 bool operator() (const string & Ths, const string & rhs) const

11 {

12 return equalsIgnoreCase(Ths, rhs); // equalsIgnoreCase is elsewhere
13 }

14}

15

16 unordered set<string,CaselnsensitiveStringHash,CaseInsensitiveStringHash> s;

Figure 5.23 Creating a case-insensitive unordered_set

These unordered classes can be used if it is not important for the entries to be viewable
in sorted order. For instance, in the word-changing example in Section 4.8, there were
three maps:

1. A map in which the key is a word length, and the value is a collection of all words of
that word length.

2. A map in which the key is a representative, and the value is a collection of all words
with that representative.

3. A map in which the key is a word, and the value is a collection of all words that differ
in only one character from that word.

Because the order in which word lengths are processed does not matter, the first map
can be an unordered_map. Because the representatives are not even needed after the second
map is built, the second map can be an unordered map. The third map can also be an
unordered map, unless we want printHighChangeables to alphabetically list the subset of
words that can be changed into a large number of other words.

The performance of an unordered map can often be superior to a map, but it is hard to
know for sure without writing the code both ways.

5.7 Hash Tables with Worst-Case O(1) Access

The hash tables that we have examined so far all have the property that with reason-
able load factors, and appropriate hash functions, we can expect O(1) cost on average
for insertions, removes, and searching. But what is the expected worst case for a search
assuming a reasonably well-behaved hash function?

5.7 Hash Tables with Worst-Case O(1) Access

For separate chaining, assuming a load factor of 1, this is one version of the classic
balls and bins problem: Given N balls placed randomly (uniformly) in N bins, what is
the expected number of balls in the most occupied bin? The answer is well known to
be ®(logN/loglog N), meaning that on average, we expect some queries to take nearly
logarithmic time. Similar types of bounds are observed (or provable) for the length of the
longest expected probe sequence in a probing hash table.

We would like to obtain O(1) worst-case cost. In some applications, such as hardware
implementations of lookup tables for routers and memory caches, it is especially important
that the search have a definite (i.e., constant) amount of completion time. Let us assume
that N is known in advance, so no rehashing is needed. If we are allowed to rearrange items
as they are inserted, then O(1) worst-case cost is achievable for searches.

In the remainder of this section we describe the earliest solution to this problem,
namely perfect hashing, and then two more recent approaches that appear to offer promis-
ing alternatives to the classic hashing schemes that have been prevalent for many years.

5.7.1 Perfect Hashing

Suppose, for purposes of simplification, that all N items are known in advance. If a separate
chaining implementation could guarantee that each list had at most a constant number of
items, we would be done. We know that as we make more lists, the lists will on average
be shorter, so theoretically if we have enough lists, then with a reasonably high probability
we might expect to have no collisions at all!

But there are two fundamental problems with this approach: First, the number of lists
might be unreasonably large; second, even with lots of lists, we might still get unlucky.

The second problem is relatively easy to address in principle. Suppose we choose the
number of lists to be M (i.e., TableSize is M), which is sufficiently large to guarantee that
with probability at least % there will be no collisions. Then if a collision is detected, we
simply clear out the table and try again using a different hash function that is independent
of the first. If we still get a collision, we try a third hash function, and so on. The expected
number of trials will be at most 2 (since the success probability is %), and this is all folded
into the insertion cost. Section 5.8 discusses the crucial issue of how to produce additional
hash functions.

So we are left with determining how large M, the number of lists, needs to be.
Unfortunately, M needs to be quite large; specifically M = Q(N?). However, if M = N2 we
can show that the table is collision free with probability at least % and this result can be
used to make a workable modification to our basic approach.

Theorem 5.2
If N balls are placed into M = N? bins, the probability that no bin has more than one
ball is less than %

Proof

If a pair (i, j) of balls are placed in the same bin, we call that a collision. Let C; j be the
expected number of collisions produced by any two balls (i,). Clearly the probability
that any two specified balls collide is 1/M, and thus C;; is 1/M, since the number
of collisions that involve the pair (i,) is either O or 1. Thus the expected number of

213

214

Chapter 5 Hashing

collisions in the entire table is } ; ;) ;; Ci,j. Since there are N(N —1)/2 pairs, this sum
is N(N — 1)/(2M) = N(N — 1)/(2N?) < % Since the expected number of collisions is
below % the probability that there is even one collision must also be below %

Of course, using N? lists is impractical. However, the preceding analysis suggests the fol-
lowing alternative: Use only N bins, but resolve the collisions in each bin by using hash
tables instead of linked lists. The idea is that because the bins are expected to have only a
few items each, the hash table that is used for each bin can be quadratic in the bin size.
Figure 5.24 shows the basic structure. Here, the primary hash table has ten bins. Bins 1, 3,
5, and 7 are all empty. Bins 0, 4, and 8 have one item, so they are resolved by a secondary
hash table with one position. Bins 2 and 6 have two items, so they will be resolved into a
secondary hash table with four (22) positions. And bin 9 has three items, so it is resolved
into a secondary hash table with nine (32) positions.

As with the original idea, each secondary hash table will be constructed using a differ-
ent hash function until it is collision free. The primary hash table can also be constructed
several times if the number of collisions that are produced is higher than required. This
scheme is known as perfect hashing. All that remains to be shown is that the total size of
the secondary hash tables is indeed expected to be linear.

Theorem 5.3
If N items are placed into a primary hash table containing N bins, then the total size of
the secondary hash tables has expected value at most 2N.

Proof

Using the same logic as in the proof of Theorem 5.2, the expected number of pairwise
collisions is at most N(N — 1)/2N, or (N — 1)/2. Let b; be the number of items that
hash to position i in the primary hash table; observe that b? space is used for this cell

—]
0 > }22=4
1 L
, L
3 =
4 > }22=4
S =
. L
7 L
. L
° |_> 3=9

Figure 5.24 Perfect hashing table using secondary hash tables

5.7 Hash Tables with Worst-Case O(1) Access

in the secondary hash table, and that this accounts for b; (b; — 1)/2 pairwise collisions,
which we will call ¢;. Thus the amount of space, biz, used for the ith secondary hash
table is 2¢; + b;. The total space is then 2 > ¢; + > b;. The total number of collisions is
(N —1)/2 (from the first sentence of this proof); the total number of items is of course
N, so we obtain a total secondary space requirement of 2(N — 1)/2 + N < 2N.

Thus, the probability that the total secondary space requirement is more than 4N is at
most % (since, otherwise, the expected value would be higher than 2N), so we can keep
choosing hash functions for the primary table until we generate the appropriate secondary
space requirement. Once that is done, each secondary hash table will itself require only an
average of two trials to be collision free. After the tables are built, any lookup can be done
in two probes.

Perfect hashing works if the items are all known in advance. There are dynamic
schemes that allow insertions and deletions (dynamic perfect hashing), but instead we
will investigate two newer alternatives that appear to be competitive in practice with the
classic hashing algorithms.

5.7.2 Cuckoo Hashing

From our previous discussion, we know that in the balls and bins problem, if N
items are randomly tossed into N bins, the size of the largest bin is expected to be
O (logN/loglogN). Since this bound has been known for a long time, and the problem
has been well studied by mathematicians, it was surprising when, in the mid 1990s, it was
shown that if, at each toss, two bins were randomly chosen and the item was tossed into the
more empty bin (at the time), then the size of the largest bin would only be ®(loglog N),
a significantly lower number. Quickly, a host of potential algorithms and data structures
arose out of this new concept of the “power of two choices.”

One of the ideas is cuckoo hashing. In cuckoo hashing, suppose we have N items.
We maintain two tables, each more than half empty, and we have two independent hash
functions that can assign each item to a position in each table. Cuckoo hashing maintains
the invariant that an item is always stored in one of these two locations.

As an example, Figure 5.25 shows a potential cuckoo hash table for six items, with
two tables of size 5 (these tables are too small, but serve well as an example). Based on the

Table 1 Table 2 A: 0,2
0| B 0| D B:0,0

1 C: 1,4
2 2 | A D: 1,0
3| FE 3 E: 3,2
4 4 | F F: 3,4

Figure 5.25 Potential cuckoo hash table. Hash functions are shown on the right. For
these six items, there are only three valid positions in Table 1 and three valid positions in
Table 2, so it is not clear that this arrangement can easily be found.

215

216

Chapter 5 Hashing

randomly chosen hash functions, item A can be at either position 0 in Table 1 or position
2 in Table 2. Item F can be at either position 3 in Table 1 or position 4 in Table 2, and
so on. Immediately, this implies that a search in a cuckoo hash table requires at most two
table accesses, and a remove is trivial, once the item is located (lazy deletion is not needed
nowl!).

But there is an important detail: How is the table built? For instance, in Figure 5.25,
there are only three available locations in the first table for the six items, and there are
only three available locations in the second table for the six items. So there are only six
available locations for these six items, and thus we must find an ideal matching of slots for
our six items. Clearly, if there were a seventh item, G, with locations 1 for Table 1 and 2 for
Table 2, it could not be inserted into the table by any algorithm (the seven items would be
competing for six table locations). One could argue that this means that the table would
simply be too loaded (G would yield a 0.70 load factor), but at the same time, if the table
had thousands of items, and were lightly loaded, but we had A, B, C, D, E, F, G with these
hash positions, it would still be impossible to insert all seven of those items. So it is not at
all obvious that this scheme can be made to work. The answer in this situation would be to
pick another hash function, and this can be fine as long as it is unlikely that this situation
occurs.

The cuckoo hashing algorithm itself is simple: To insert a new item, x, first make sure it
is not already there. We can then use the first hash function, and if the (first) table location
is empty, the item can be placed. So Figure 5.26 shows the result of inserting A into an
empty hash table.

Suppose now we want to insert B, which has hash locations 0 in Table 1 and 0 in
Table 2. For the remainder of the algorithm, we will use (hy, hy) to specify the two locations,
so Bs locations are given by (0, 0). Table 1 is already occupied in position 0. At this point
there are two options: One is to look in Table 2. The problem is that position O in Table 2
could also be occupied. It happens that in this case it is not, but the algorithm that the
standard cuckoo hash table uses does not bother to look. Instead, it preemptively places
the new item B in Table 1. In order to do so, it must displace A, so A moves to Table 2,
using its Table 2 hash location, which is position 2. The result is shown in Figure 5.27. It
is easy to insert C, and this is shown in Figure 5.28.

Next we want to insert D, with hash locations (1, 0). But the Table 1 location
(position 1) is already taken. Note also that the Table 2 location is not already taken, but
we don't look there. Instead, we have D replace C, and then C goes into Table 2 at position
4, as suggested by its second hash function. The resulting tables are shown in Figure 5.29.

Table 1 Table 2 A: 0,2
0] A 0
1 1
2 2
3 3
4 4

Figure 5.26 Cuckoo hash table after insertion of A

Table 1 Table 2
OB 0
1 1
2 2 1A
3 3
4 4

Figure 5.27

5.7 Hash Tables with Worst-Case O(1) Access

A:0,2
B:0,0

Cuckoo hash table after insertion of B

Table 1 Table 2
0B 0
1|C 1
2 2 1A
3 3
4 4

A: 0,2
B: 0,0
C: 1,4

Figure 5.28 Cuckoo hash table after insertion of C

After this is done, E can be easily inserted. So far, so good, but can we now insert F?
Figures 5.30 to 5.33 show that this algorithm successfully inserts F, by displacing E, then
A, and then B.

Clearly, as we mentioned before, we cannot successfully insert G with hash locations
(1, 2). If we were to try, we would displace D, then B, then A, E, F, and C, and then C

Table 1 Table 2
0| B 0
1D 1
2 2| A
3| E 3
4 41 C

A 0,2
B:0,0
C 1,4
D: 1,0
E: 3,2

Figure 5.29 Cuckoo hash table after insertion of D

Table 1 Table 2
0| B 0
1| D 1
2 2 | A
3| F 3
4 41 C

A: 0,2
B:0,0
C: 1,4
D: 1,0
E:3,2
F: 3,4

Figure 5.30 Cuckoo hash table starting the insertion of F into the table in Figure 5.29.
First, F displaces E.

217

218

Chapter 5 Hashing

Table 1 Table 2 A: 0,2
0| B 0 B: 0,0
1D 1 C 1,4
2 2 | E D: 1,0
3| F 3 E: 3,2
4 4 | C F: 3,4
Figure 5.31 Continuing the insertion of F into the table in Figure 5.29. Next, E
displaces A.
Table 1 Table 2 A: 0,2
0] A 0 B: 0,0
1D 1 C 1,4
2 2 | E D: 1,0
3| F 3 E: 3,2
4 4 | C F: 3,4
Figure 5.32 Continuing the insertion of F into the table in Figure 5.29. Next, A
displaces B.
Table 1 Table 2 A: 0,2
0] A 0| B B: 0,0
11D 1 C 1,4
2 2 | E D: 1,0
3 F 3 E: 3,2
4 4| C F:3,4

Figure 5.33 Completing the insertion of F into the table in Figure 5.29. Miraculously (?),
B finds an empty position in Table 2.

would try to go back into Table 1, position 1, displacing G which was placed there at
the start. This would get us to Figure 5.34. So now G would try its alternate in Table 2
(location 2) and then displace A, which would displace B, which would displace D, which
would displace C, which would displace F, which would displace E, which would now
displace G from position 2. At this point, G would be in a cycle.

The central issue then concerns questions such as what is the probability of there being
a cycle that prevents the insertion from completing, and what is the expected number of
displacements required for a successful insertion? Fortunately, if the table’s load factor is
below 0.5, an analysis shows that the probability of a cycle is very low, that the expected
number of displacements is a small constant, and that it is extremely unlikely that a suc-
cessful insertion would require more than O(log N) displacements. As such, we can simply
rebuild the tables with new hash functions after a certain number of displacements are

5.7 Hash Tables with Worst-Case O(1) Access

Table 1 Table 2 g: 0,2
0| B 0| D C?(L)}
C B

D: 1,0
2 2 | A
ST 3 E: 3,2
F: 3,4
4 4] F G 1,2

Figure 5.34 Inserting G into the table in Figure 5.33. G displaces D, which displaces B,
which displaces A, which displaces E, which displaces F, which displaces C, which dis-
places G. It is not yet hopeless since when G is displaced, we would now try the other hash
table, at position 2. However, while that could be successful in general, in this case there
is a cycle and the insertion will not terminate.

detected. More precisely, the probability that a single insertion would require a new set of
hash functions can be made to be O(1/ N2): the new hash functions themselves generate N
more insertions to rebuild the table, but even so, this means the rebuilding cost is minimal.
However, if the table’s load factor is at 0.5 or higher, then the probability of a cycle becomes
drastically higher, and this scheme is unlikely to work well at all.

After the publication of cuckoo hashing, numerous extensions were proposed. For
instance, instead of two tables, we can use a higher number of tables, such as 3 or 4.
While this increases the cost of a lookup, it also drastically increases the theoretical space
utilization. In some applications the lookups through separate hash functions can be done
in parallel and thus cost little to no additional time. Another extension is to allow each
table to store multiple keys; again, this can increase space utilization and make it easier to
do insertions and can be more cache-friendly. Various combinations are possible, as shown
in Figure 5.35. And finally, often cuckoo hash tables are implemented as one giant table
with two (or more) hash functions that probe the entire table, and some variations attempt
to place an item in the second hash table immediately if there is an available spot, rather
than starting a sequence of displacements.

Cuckoo Hash Table Implementation

Implementing cuckoo hashing requires a collection of hash functions; simply using
hashCode to generate the collection of hash functions makes no sense, since any hashCode
collisions will result in collisions in all the hash functions. Figure 5.36 shows a simple
interface that can be used to send families of hash functions to the cuckoo hash table.

1 item per cell

2 items per cell

4 items per cell

2 hash functions

0.49

0.86

0.93

3 hash functions

0.91

0.97

0.98

4 hash functions

0.97

0.99

0.999

Figure 5.35 Maximum load factors for cuckoo hashing variations

219

220

Chapter 5 Hashing

template <typename AnyType>
class CuckooHashFamily
{
pubTic:
size_t hash(const AnyType & x, int which) const;
int getNumberOfFunctions();
void generateNewFunctions();

0~ O U AW N =

}s

Figure 5.36 Generic HashFamily interface for cuckoo hashing

Figure 5.37 provides the class interface for cuckoo hashing. We will code a variant
that will allow an arbitrary number of hash functions (specified by the HashFamily template
parameter type) which uses a single array that is addressed by all the hash functions.
Thus our implementation differs from the classic notion of two separately addressable
hash tables. We can implement the classic version by making relatively minor changes to
the code; however, the version provided in this section seems to perform better in tests
using simple hash functions.

In Figure 5.37, we specify that the maximum load for the table is 0.4; if the load
factor of the table is about to exceed this limit, an automatic table expansion is per-
formed. We also define ALLOWED REHASHES, which specifies how many rehashes we will
perform if evictions take too long. In theory, ALLOWED REHASHES can be infinite, since we
expect only a small constant number of rehashes are needed; in practice, depending on
several factors such as the number of hash functions, the quality of the hash functions,
and the load factor, the rehashes could significantly slow things down, and it might be
worthwhile to expand the table, even though this will cost space. The data representation
for the cuckoo hash table is straightforward: We store a simple array, the current size, and
the collections of hash functions, represented in a HashFamily instance. We also maintain
the number of hash functions, even though that is always obtainable from the HashFamily
instance.

Figure 5.38 shows the constructor and makeEmpty methods, and these are straightfor-
ward. Figure 5.39 shows a pair of private methods. The first, myHash, is used to select the
appropriate hash function and then scale it into a valid array index. The second, findPos,
consults all the hash functions to return the index containing item x, or —1 if x is not
found. findPos is then used by contains and remove in Figures 5.40 and 5.41, respectively,
and we can see that those methods are easy to implement.

The difficult routine is insertion. In Figure 5.42, we can see that the basic plan is to
check to see if the item is already present, returning if so. Otherwise, we check to see if the
table is fully loaded, and if so, we expand it. Finally we call a helper routine to do all the
dirty work.

The helper routine for insertion is shown in Figure 5.43. We declare a variable rehashes
to keep track of how many attempts have been made to rehash in this insertion. Our
insertion routine is mutually recursive: If needed, insert eventually calls rehash, which
eventually calls back into insert. Thus rehashes is declared in an outer scope for code
simplicity.

5.7 Hash Tables with Worst-Case O(1) Access

template <typename AnyType, typename HashFamily>
class CuckooHashTable

{

}s

public:

explicit CuckooHashTable(int size = 101);

void makeEmpty();
bool contains(const AnyType & x) const;

bool remove(const AnyType & x);
bool insert(const AnyType & x);
bool insert(AnyType && X);

private:

struct HashEntry

{
AnyType element;
bool isActive;

HashEntry(const AnyType & e = AnyType(), bool a = false)
: element{ e }, isActive{ a } { }

HashEntry(AnyType && e, bool a = false)
: element{ std::move(e) }, isActive{ a } { }

}s

bool insertHelperl(const AnyType & xx);
bool insertHelperl(AnyType && xx);
bool isActive(int currentPos) const;

size_t myhash(const AnyType & x, int which) const;
int findPos(const AnyType & x) const;

void expand();

void rehash();

void rehash(int newSize);

static const double MAX_LOAD = 0.40;
static const int ALLOWED REHASHES = 5;

vector<HashEntry> array;
int currentSize;

int numHashFunctions;

int rehashes;
UniformRandom r;
HashFamily hashFunctions;

Figure 5.37 Class interface for cuckoo hashing

221

222 Chapter 5 Hashing

1 explicit HashTable(int size = 101) : array(nextPrime(size))
2 {

3 numHashFunctions = hashFunctions.getNumberOfFunctions();
4 rehashes = 0;

5 makeEmpty();

6 }

7

8 void makeEmpty()

9 {

10 currentSize = 0;

11 for(auto & entry : array)

12 entry.isActive = false;

13 }

Figure 5.38 Routines to initialize and empty the cuckoo hash table

1 /*'k

2 * Compute the hash code for x using specified function.
3 */

4 int myhash(const AnyType & x, int which) const

5 {

6 return hashFunctions.hash(x, which) % array.size();
7 }

8

9 /**

10 * Search all hash function places. Return the position
11 * where the search terminates or -1 if not found.

12 */

13 int findPos(const AnyType & x) const

14 {

15 for(int i = 0; i < numHashFunctions; ++i)

16 {

17 int pos = myhash(x, i);

18

19 if(isActive(pos) && array[pos].element == x)
20 return pos;

21 }

22

23 return -1;

24 }

Figure 5.39 Routines to find the location of an item in the cuckoo hash table and to
compute the hash code for a given table

~N Oy U A W N =

5.7 Hash Tables with Worst-Case O(1) Access

/**

* Return true if x is found.

*/

bool contains(const AnyType & x) const

{

}

return findPos(x) != -1;

Figure 5.40 Routine to search a cuckoo hash table

—_ —
— O O 0 N R W N =

— —
W N

14

/**

* Remove x from the hash table.

* Return true if item was found and removed.

bool remove(const AnyType & x)

{

}

int currentPos = findPos(x);
if(!isActive(currentPos))
return false;

array[currentPos].isActive = false;
--currentSize;
return true;

Figure 5.41 Routine to remove from a cuckoo hash table

O 0 ~ O L A W N —=

—_
(=

bool insert(const AnyType & x)
{
if(contains(x))
return false;

if(currentSize >= array.size() * MAX_LOAD)
expand();

return insertHelperl(x);

}

Figure 5.42 Public insert routine for cuckoo hashing

Our basic logic is different from the classic scheme. We have already tested that the

item to insert is not already present. At lines 15 to 25, we check to see if any of the valid
positions are empty; if so, we place our item in the first available position and we are done.
Otherwise, we evict one of the existing items. However, there are some tricky issues:

223

224 Chapter 5 Hashing

1 static const int ALLOWED REHASHES = 5;
2
3 bool insertHelperl(const AnyType & xx)
4 {
5 const int COUNT_LIMIT = 100;
6 AnyType X = xx;
7
8 while(true)
9 {
10 int lastPos = -1;
11 int pos;
12
13 for(int count = 0; count < COUNT_LIMIT; ++count)
14 {
15 for(int i = 0; i < numHashFunctions; ++i)
16 {
17 pos = myhash(x, 1);
18
19 if(lisActive(pos))
20 {
21 array[pos] = std::move(HashEntry{ std::move(x), true });
22 ++currentSize;
23 return true;
24 }
25 }
26
27 // None of the spots are available. Evict a random one
28 int i = 0;
29 do
30 {
31 pos = myhash(x, r.nextInt(numHashFunctions));
32 } while(pos == lastPos && i++ < 5);
33
34 lastPos = pos;
35 std::swap(x, array[pos].element);
36 }
37
38 if(++rehashes > ALLOWED_REHASHES)
39 {
40 expand(); // Make the table bigger
41 rehashes = 0; // Reset the # of rehashes
42 }
43 else
44 rehash(); // Same table size, new hash functions
45 }
46 }

Figure 5.43 Insertion routine for cuckoo hashing uses a different algorithm that chooses
the item to evict randomly, attempting not to re-evict the last item. The table will attempt
to select new hash functions (rehash) if there are too many evictions and will expand if
there are too many rehashes.

5.7 Hash Tables with Worst-Case O(1) Access

* Evicting the first item did not perform well in experiments.
* Evicting the last item did not perform well in experiments.

* Evicting the items in sequence (i.e., the first eviction uses hash function 0, the next
uses hash function 1, etc.) did not perform well in experiments.

* Evicting the item purely randomly did not perform well in experiments: In particular,
with only two hash functions, it tended to create cycles.

To alleviate the last problem, we maintain the last position that was evicted, and if our
random item was the last evicted item, we select a new random item. This will loop forever
if used with two hash functions, and both hash functions happen to probe to the same
location, and that location was a prior eviction, so we limit the loop to five iterations
(deliberately using an odd number).

The code for expand and rehash is shown in Figure 5.44. expand creates a larger array but
keeps the same hash functions. The zero-parameter rehash leaves the array size unchanged
but creates a new array that is populated with newly chosen hash functions.

1 void expand()

2 {

3 rehash(static_cast<int>(array.size() / MAX_LOAD));
4 }

5

6 void rehash()

7 {

8 hashFunctions.generateNewFunctions();

9 rehash(array.size());

10 }

11

12 void rehash(int newSize)

13 {

14 vector<HashEntry> oldArray = array;

15

16 // Create new double-sized, empty table
17 array.resize(nextPrime(newSize));

18 for(auto & entry : array)

19 entry.isActive = false;
20
21 // Copy table over
22 currentSize = 0;
23 for(auto & entry : oldArray)
24 if(entry.isActive)
25 insert(std::move(entry.element));
26 }

Figure 5.44 Rehashing and expanding code for cuckoo hash tables

225

226

Chapter 5 Hashing

1 template <int count>
2 class StringHashFamily
3
4 public:
5 StringHashFamily() : MULTIPLIERS(count)
6 {
7 generateNewFunctions();
8 }
9
10 int getNumberOfFunctions() const
11 {
12 return count;
13 }
14
15 void generateNewFunctions()
16 {
17 for(auto & mult : MULTIPLIERS)
18 mult = r.nextInt();
19 }
20
21 size_t hash(const string & x, int which) const
22 {
23 const int multiplier = MULTIPLIERS[which];
24 size_t hashVal = 0;
25
26 for(auto ch : x)
27 hashVal = multiplier * hashVal + ch;
28
29 return hashVal;
30 }
31
32 private:
33 vector<int> MULTIPLIERS;
34 UniformRandom r;
35 1

Figure 5.45 Casual string hashing for cuckoo hashing; these hash functions do not prov-
ably satisty the requirements needed for cuckoo hashing but offer decent performance
if the table is not highly loaded and the alternate insertion routine in Figure 5.43 is
used.

Finally, Figure 5.45 shows the StringHashFamily class that provides a set of simple
hash functions for strings. These hash functions replace the constant 37 in Figure 5.4 with
randomly chosen numbers (not necessarily prime).

The benefits of cuckoo hashing include the worst-case constant lookup and deletion
times, the avoidance of lazy deletion and extra data, and the potential for parallelism.

5.7 Hash Tables with Worst-Case O(1) Access

However, cuckoo hashing is extremely sensitive to the choice of hash functions; the inven-
tors of the cuckoo hash table reported that many of the standard hash functions that
they attempted performed poorly in tests. Furthermore, although the insertion time is
expected to be constant time as long as the load factor is below % the bound that has been
shown for the expected insertion cost for classic cuckoo hashing with two separate tables
(both with load factor 1) is roughly 1/(1 — (4 2213 which deteriorates rapidly as the

load factor gets close to % (the formula itself makes no sense when A equals or exceeds

%). Using lower load factors or more than two hash functions seems like a reasonable
alternative.

5.7.3 Hopscotch Hashing

Hopscotch hashing is a new algorithm that tries to improve on the classic linear probing
algorithm. Recall that in linear probing, cells are tried in sequential order, starting from the
hash location. Because of primary and secondary clustering, this sequence can be long on
average as the table gets loaded, and thus many improvements such as quadratic probing,
double hashing, and so forth, have been proposed to reduce the number of collisions.
However, on some modern architectures, the locality produced by probing adjacent cells
is a more significant factor than the extra probes, and linear probing can still be practical
or even a best choice.

The idea of hopscotch hashing is to bound the maximal length of the probe sequence
by a predetermined constant that is optimized to the underlying computer’s architecture.
Doing so would give constant-time lookups in the worst case, and like cuckoo hashing, the
lookup could be parallelized to simultaneously check the bounded set of possible locations.

If an insertion would place a new item too far from its hash location, then we effi-
ciently go backward toward the hash location, evicting potential items. If we are careful,
the evictions can be done quickly and guarantee that those evicted are not placed too far
from their hash locations. The algorithm is deterministic in that given a hash function,
either the items can be evicted or they can't. The latter case implies that the table is likely
too crowded, and a rehash is in order; but this would happen only at extremely high load
factors, exceeding 0.9. For a table with a load factor of % the failure probability is almost
zero (Exercise 5.23).

Let MAX_DIST be the chosen bound on the maximum probe sequence. This means
that item x must be found somewhere in the MAX_ DIST positions listed in hash(x),
hash(x) + 1,..., hash(x) + (MAX_DIST — 1). In order to efficiently process evictions,
we maintain information that tells for each position x, whether the item in the alternate
position is occupied by an element that hashes to position x.

As an example, Figure 5.46 shows a fairly crowded hopscotch hash table, using
MAX_DIST = 4. The bit array for position 6 shows that only position 6 has an item
(C) with hash value 6: Only the first bit of Hop[6] is set. Hop[7] has the first two bits
set, indicating that positions 7 and 8 (A and D) are occupied with items whose hash value
is 7. And Hopl8] has only the third bit set, indicating that the item in position 10 (E) has
hash value 8. If MAX_DIST is no more than 32, the Hop array is essentially an array of
32-bit integers, so the additional space requirement is not substantial. If Hop[pos] contains
all 1s for some pos, then an attempt to insert an item whose hash value is pos will clearly

227

228

Chapter 5 Hashing

| [tem | Hop
6] C [1000
71 A | 1100 AT
s| b | o010 B9
9| B | 1000 o

D: 7

10| E | 0000 e
11| G | 1000 .
12| F | 1000 .
13 0000
14 0000

Figure 5.46 Hopscotch hashing table. The hops tell which of the positions in the block
are occupied with cells containing this hash value. Thus Hop[8] = 0010 indicates that
only position 10 currently contains items whose hash value is 8, while positions 8, 9, and
11 do not.

fail, since there would now be MAX_DIST + 1 items trying to reside within MAX_DIST
positions of pos—an impossibility.

Continuing the example, suppose we now insert item H with hash value 9. Our normal
linear probing would try to place it in position 13, but that is too far from the hash value
of 9. So instead, we look to evict an item and relocate it to position 13. The only candidates
to go into position 13 would be items with hash value of 10, 11, 12, or 13. If we examine
Hopl10], we see that there are no candidates with hash value 10. But Hop[11] produces a
candidate, G, with value 11 that can be placed into position 13. Since position 11 is now
close enough to the hash value of H, we can now insert H. These steps, along with the
changes to the Hop information, are shown in Figure 5.47.

Finally, we will attempt to insert I whose hash value is 6. Linear probing suggests
position 14, but of course that is too far away. Thus we look in Hop[11], and it tells us that
G can move down, freeing up position 13. Now that 13 is vacant, we can look in Hop[10]
to find another element to evict. But Hop[10] has all zeros in the first three positions, so
there are no items with hash value 10 that can be moved. So we examine Hop[11]. There
we find all zeros in the first two positions.

So we try Hop[12], where we need the first position to be 1, which it is. Thus F can
move down. These two steps are shown in Figure 5.48. Notice that if this were not the
case—for instance if hash(F) were 9 instead of 12—we would be stuck and have to rehash.
However, that is not a problem with our algorithm; instead, there would simply be no way
toplaceall of C, I, A, D, E, B, H, and F (if F’s hash value were 9); these items would all have
hash values between 6 and 9, and would thus need to be placed in the seven spots between
6 and 12. But that would be eight items in seven spots—an impossibility. However, since
this is not the case for our example, and we have evicted an item from position 12, we can
now continue. Figure 5.49 shows the remaining eviction from position 9 and subsequent
placement of I.

| Item | Hop

6 C 1000

7 A 1100

8 D 0010

9 B 1000

10 E 0000
11 G 1000
12 F 1000
13 0000
14 0000

| [tem | Hop
6| C 1000
7 A 1100
8| D 0010
9] B 1000
10| E 0000
11 0010
12| F 1000
131 G 0000
14 0000

5.7 Hash Tables with Worst-Case O(1) Access

| Item | Hop

6 C 1000
7 A 1100
8 D 0010
9 B 1010

-

10 E 0000
11 H 0010
12 F 1000
13 G 0000
14 0000

A7
B: 9
C: 6
D: 7
E: 8
F: 12
G: 11
H: 9

Figure 5.47 Hopscotch hashing table. Attempting to insert H. Linear probing suggests
location 13, but that is too far, so we evict G from position 11 to find a closer position.

| [tem | Hop
6 C 1000
71 A 1100
8| D 0010
9 B 1010
10 E 0000
11 H | 0010
12 F 1000
13 G | 0000
14 0000

| [tem | Hop

6 C 1000

7 A 1100

8 D 0010

9 B 1010

10 E 0000
11 H 0001
12 F 1000
13 0000
14 G 0000

| [tem | Hop

6 C 1000
71 A 1100
8| D 0010
9 B 1010

—>

10 E 0000
11 H 0001
12 0100
13 F 0000
14 G 0000

A7
B: 9
C: 6
D: 7
E: 8
F: 12
G: 11
H: 9
1.6

Figure 5.48 Hopscotch hashing table. Attempting to insert I. Linear probing suggests
location 14, but that is too far; consulting Hop[11], we see that G can move down, leaving
position 13 open. Consulting Hop[10] gives no suggestions. Hop[11] does not help either
(why?), so Hop[12] suggests moving F.

Hopscotch hashing is a relatively new algorithm, but the initial experimental results are

very promising, especially for applications that make use of multiple processors and require
significant parallelism and concurrency. It remains to be seen if either cuckoo hashing or
hopscotch hashing emerge as a practical alternative to the classic separate chaining and
linear/quadratic probing schemes.

229

230

Chapter 5 Hashing

| [tem | Hop | [tem | Hop | Item | Hop
e
6 C 1000 6 C 1000 6 C 1001
7] A | 1100 7] A | 1100 71 A |1w00]| ¢
8 D 0010 8 D 0010 8 D 0010 g i
9 B 1010 9 0011 9 I 0011 '
— — E:8
10 E 0000 10 E 0000 10 E 0000 D
11 H 0001 11 H 0001 11 H 0001 G 1
12 0100 12 B 0100 12 B 0100 H 9
13 F 0000 13 F 0000 13 F 0000 I ‘6
14 G 0000 14 G 0000 14 G 0000

Figure 5.49 Hopscotch hashing table. Insertion of I continues: Next, B is evicted, and
finally, we have a spot that is close enough to the hash value and can insert I.

5.8 Universal Hashing

Although hash tables are very efficient and have constant average cost per operation,
assuming appropriate load factors, their analysis and performance depend on the hash
function having two fundamental properties:

1. The hash function must be computable in constant time (i.e., independent of the
number of items in the hash table).

2. The hash function must distribute its items uniformly among the array slots.

In particular, if the hash function is poor, then all bets are off, and the cost per operation
can be linear. In this section, we discuss universal hash functions, which allow us to
choose the hash function randomly in such a way that condition 2 above is satisfied. As
in Section 5.7, we use M to represent TableSize. Although a strong motivation for the use
of universal hash functions is to provide theoretical justification for the assumptions used
in the classic hash table analyses, these functions can also be used in applications that
require a high level of robustness, in which worst-case (or even substantially degraded)
performance, perhaps based on inputs generated by a saboteur or hacker, simply cannot
be tolerated.
As in Section 5.7, we use M to represent TableSize.

Definition 5.1
A family H of hash functions is universal, if for any x # y, the number of hash functions
hin H for which h(x) = h(y) is at most |H|/M.

Notice that this definition holds for each pair of items, rather than being averaged over
all pairs of items. The definition above means that if we choose a hash function randomly
from a universal family H, then the probability of a collision between any two distinct items

5.8 Universal Hashing

is at most 1/M, and when adding into a table with N items, the probability of a collision at
the initial point is at most N/M, or the load factor.

The use of a universal hash function for separate chaining or hopscotch hashing would
be sufficient to meet the assumptions used in the analysis of those data structures. However,
it is not sufficient for cuckoo hashing, which requires a stronger notion of independence.
In cuckoo hashing, we first see if there is a vacant location; if there is not, and we do an
eviction, a different item is now involved in looking for a vacant location. This repeats
until we find the vacant location, or decide to rehash [generally within O(logN) steps].
In order for the analysis to work, each step must have a collision probability of N/M
independently, with a different item x being subject to the hash function. We can formalize
this independence requirement in the following definition.

Definition 5.2

A family H of hash functions is k-universal, if for any x1 # y1, x2 # y2,..., X1 # Vi,
the number of hash functions h in H for which h(x1) = h(y1), h(x2) = h(y2), ..., and
h(xx) = h(yp) is at most |H| /M.

With this definition, we see that the analysis of cuckoo hashing requires an O(log N)-
universal hash function (after that many evictions, we give up and rehash). In this section
we look only at universal hash functions.

To design a simple universal hash function, we will assume first that we are mapping
very large integers into smaller integers ranging from 0 to M — 1. Let p be a prime larger
than the largest input key.

Our universal family H will consist of the following set of functions, where a and b are
chosen randomly:

H={H;p(x) = ((ax+b) mod p) mod M, wherel <a<p—1,0<b<p-—1}

For example, in this family, three of the possible random choices of (a, b) yield three
different hash functions:

H;7(x) = (3x + 7) mod p) mod M
H4 1) = ((4x + 1) mod p) mod M
Hg o(x) = ((8x) mod p) mod M

Observe that there are p(p — 1) possible hash functions that can be chosen.

Theorem 5.4
The hash family H = {H,,(x) = ((ax + b) mod p) mod M, where 1 < a < p — 1,
0 <b <p— 1} is universal.

Proof
Let x and y be distinct values, with x > y, such that H; ,(x) = Hy(y).

Clearly if (ax + b) mod p is equal to (ay + b) mod p, then we will have a collision.
However, this cannot happen: Subtracting equations yields a(x — y) = 0 (mod p),
which would mean that p divides a or p divides x —y, since p is prime. But neither can
happen, since both a and x — y are between 1 and p — 1.

So let ¥ = (ax + b) mod p and let s = (ay + b) mod p, and by the above argument,
r # s. Thus there are p possible values for r, and for each r, there are p — 1 possible

231

232

Chapter 5 Hashing

values for s, for a total of p(p — 1) possible (r, s) pairs. Notice that the number of (a, b)
pairs and the number of (r,s) pairs is identical; thus each (r,s) pair will correspond
to exactly one (g, b) pair if we can solve for (a,b) in terms of v and s. But that is easy:
As before, subtracting equations yields a(x — y) = (r — s) (mod p), which means that
by multiplying both sides by the unique multiplicative inverse of (x — y) (which must
exist, since x — y is not zero and p is prime), we obtain a, in terms of r and s. Then b
follows.

Finally, this means that the probability that x and y collide is equal to the proba-
bility that r = s (mod M), and the above analysis allows us to assume that r and s are
chosen randomly, rather than a and b. Immediate intuition would place this probability
at 1/M, but that would only be true if p were an exact multiple of M, and all possible
(r,s) pairs were equally likely. Since p is prime, and r # s, that is not exactly true, so a
more careful analysis is needed.

For a given r, the number of values of s that can collide mod M is at most [p/M]—1
(the —1 is because r # s). It is easy to see that this is at most (p — 1)/M. Thus the
probability that r and s will generate a collision is at most 1/M (we divide by p — 1,
because, as mentioned earlier in the proof, there are only p — 1 choices for s given r).
This implies that the hash family is universal.

Implementation of this hash function would seem to require two mod operations:
one mod p and the second mod M. Figure 5.50 shows a simple implementation in C++,
assuming that M is significantly less than 23! — 1. Because the computations must now be
exactly as specified, and thus overflow is no longer acceptable, we promote to Tong long
computations, which are at least 64 bits.

However, we are allowed to choose any prime p, as long as it is larger than M. Hence, it
makes sense to choose a prime that is most favorable for computations. One such prime is
p = 22! — 1. Prime numbers of this form are known as Mersenne primes; other Mersenne
primes include 2° — 1, 21 — 1 and 2% — 1. Just as a multiplication by a Mersenne prime
such as 31 can be implemented by a bit shift and a subtract, a mod operation involving a
Mersenne prime can also be implemented by a bit shift and an addition:

Suppose r =y (mod p). If we divide y by (p+ 1), theny = ¢/(p + 1) + 1/, where ¢’
and r’ are the quotient and remainder, respectively. Thus, r = ¢'(p+ 1) + 1’ (mod p).
And since (p+ 1) = 1 (mod p), we obtain r = ¢ + 1’ (mod p).

Figure 5.51 implements this idea, which is known as the Carter-Wegman trick. On
line 8, the bit shift computes the quotient and the bitwise-and computes the remainder
when dividing by (p + 1); these bitwise operations work because (p + 1) is an exact power

int universalHash(int x, int A, int B, int P, int M)

1
2|
3 return static_cast<int>(((static_cast<long long>(A) * x) +B) %P) % M;
4}

Figure 5.50 Simple implementation of universal hashing

5.9 Extendible Hashing

1 const int DIGS = 31;

2 const int mersennep = (1<<DIGS) - 1;

3

4 int universalHash(int x, int A, int B, int M)

5

6 Tong Tong hashVal = static_cast<long long>(A) * x + B;
7

8 hashval = ((hashVal >> DIGS) + (hashVal & mersennep));
9 if(hashVal >= mersennep)
10 hashVal -= mersennep;
11
12 return static_cast<int>(hashval) % M;
13}

Figure 5.51 Simple implementation of universal hashing

of two. Since the remainder could be almost as large as p, the resulting sum might be larger
than p, so we scale it back down at lines 9 and 10.

Universal hash functions exist for strings also. First, choose any prime p, larger than M
(and larger than the largest character code). Then use our standard string hashing function,
choosing the multiplier randomly between 1 and p — 1 and returning an intermediate hash
value between 0 and p — 1, inclusive. Finally, apply a universal hash function to generate
the final hash value between 0 and M — 1.

5.9 Extendible Hashing

Our last topic in this chapter deals with the case where the amount of data is too large to
fit in main memory. As we saw in Chapter 4, the main consideration then is the number of
disk accesses required to retrieve data.

As before, we assume that at any point we have N records to store; the value of N
changes over time. Furthermore, at most M records fit in one disk block. We will use
M = 4 in this section.

If either probing hashing or separate chaining hashing is used, the major problem
is that collisions could cause several blocks to be examined during a search, even for
a well-distributed hash table. Furthermore, when the table gets too full, an extremely
expensive rehashing step must be performed, which requires O(N) disk accesses.

A clever alternative, known as extendible hashing, allows a search to be performed in
two disk accesses. Insertions also require few disk accesses.

We recall from Chapter 4 that a B-tree has depth O(logy,,, N). As M increases, the depth
of a B-tree decreases. We could in theory choose M to be so large that the depth of the B-tree
would be 1. Then any search after the first would take one disk access, since, presumably,
the root node could be stored in main memory. The problem with this strategy is that the
branching factor is so high that it would take considerable processing to determine which
leaf the data was in. If the time to perform this step could be reduced, then we would have
a practical scheme. This is exactly the strategy used by extendible hashing.

233

234

Chapter 5 Hashing

00 01 10 11

[41

2) 2)) ©))

000100 | 1010100 | [100000 | | 111000

001000 | 1011000 | [101000 | | 111001

001010 101100

001011 101110

Figure 5.52 Extendible hashing: original data

Let us suppose, for the moment, that our data consists of several 6-bit integers.
Figure 5.52 shows an extendible hashing scheme for these data. The root of the “tree”
contains four pointers determined by the leading two bits of the data. Each leaf has up to
M = 4 elements. It happens that in each leaf the first two bits are identical; this is indi-
cated by the number in parentheses. To be more formal, D will represent the number of
bits used by the root, which is sometimes known as the directory. The number of entries
in the directory is thus 2P. d; is the number of leading bits that all the elements of some
leaf L have in common. d; will depend on the particular leaf, and d; < D.

Suppose that we want to insert the key 100100. This would go into the third leaf, but
as the third leaf is already full, there is no room. We thus split this leaf into two leaves,
which are now determined by the first three bits. This requires increasing the directory size
to 3. These changes are reflected in Figure 5.53.

Notice that all the leaves not involved in the split are now pointed to by two adjacent
directory entries. Thus, although an entire directory is rewritten, none of the other leaves
is actually accessed.

If the key 000000 is now inserted, then the first leaf is split, generating two leaves with
d;. = 3. Since D = 3, the only change required in the directory is the updating of the 000
and 001 pointers. See Figure 5.54.

This very simple strategy provides quick access times for insert and search operations
on large databases. There are a few important details we have not considered.

First, it is possible that several directory splits will be required if the elements in a leaf
agree in more than D + 1 leading bits. For instance, starting at the original example, with
D = 2,if 111010, 111011, and finally 111100 are inserted, the directory size must be
increased to 4 to distinguish between the five keys. This is an easy detail to take care of,
but must not be forgotten. Second, there is the possibility of duplicate keys; if there are
more than M duplicates, then this algorithm does not work at all. In this case, some other
arrangements need to be made.

5.9 Extendible Hashing 235

000 001 010 011 100 101 110 111
@ @ 3 3) @)

000100 | {010100 | [100000 | [101000 | 111000

001000 | [011000 | [100100 | [101100 (| 111001

001010 101110

001011

Figure 5.53 Extendible hashing: after insertion of 100100 and directory split

000 001 010 011 100 101
3) 3)

3 3) @)

1 1

10 11
@)
000000 [1001000 | {010100 | | 100000 | | 101000 | | 111000

000100 | 1001010 | [011000 | 100100 | 1101100 | | 111001

001011 101110

Figure 5.54 Extendible hashing: after insertion of 000000 and leaf split

These possibilities suggest that it is important for the bits to be fairly random. This can
be accomplished by hashing the keys into a reasonably long integer—hence the name.

We close by mentioning some of the performance properties of extendible hashing,
which are derived after a very difficult analysis. These results are based on the reasonable
assumption that the bit patterns are uniformly distributed.

The expected number of leaves is (N/M)log, e. Thus the average leaf is In2 = 0.69
full. This is the same as for B-trees, which is not entirely surprising, since for both data
structures new nodes are created when the (M + 1)th entry is added.

236

Chapter 5 Hashing

The more surprising result is that the expected size of the directory (in other words,
2P is ON'Y/M /M) If M is very small, then the directory can get unduly large. In this
case, we can have the leaves contain pointers to the records instead of the actual records,
thus increasing the value of M. This adds a second disk access to each search operation in
order to maintain a smaller directory. If the directory is too large to fit in main memory, the
second disk access would be needed anyway.

Summary

Hash tables can be used to implement the insert and contains operations in constant
average time. It is especially important to pay attention to details such as load factor when
using hash tables, since otherwise the time bounds are not valid. It is also important to
choose the hash function carefully when the key is not a short string or integer.

For separate chaining hashing, the load factor should be close to 1, although perfor-
mance does not significantly degrade unless the load factor becomes very large. For probing
hashing, the load factor should not exceed 0.5, unless this is completely unavoidable. If
linear probing is used, performance degenerates rapidly as the load factor approaches 1.
Rehashing can be implemented to allow the table to grow (and shrink), thus maintaining
a reasonable load factor. This is important if space is tight and it is not possible just to
declare a huge hash table.

Other alternatives such as cuckoo hashing and hopscotch hashing can also yield good
results. Because all these algorithms are constant time, it is difficult to make strong state-
ments about which hash table implementation is the “best”; recent simulation results
provide conflicting guidance and suggest that the performance can depend strongly
on the types of items being manipulated, the underlying computer hardware, and the
programming language.

Binary search trees can also be used to implement insert and contains operations.
Although the resulting average time bounds are O(log N), binary search trees also support
routines that require order and are thus more powerful. Using a hash table, it is not possible
to find the minimum element. It is not possible to search efficiently for a string unless the
exact string is known. A binary search tree could quickly find all items in a certain range;
this is not supported by hash tables. Furthermore, the O(logN) bound is not necessarily
that much more than O(1), especially since no multiplications or divisions are required by
search trees.

On the other hand, the worst case for hashing generally results from an implementa-
tion error, whereas sorted input can make binary trees perform poorly. Balanced search
trees are quite expensive to implement, so if no ordering information is required and
there is any suspicion that the input might be sorted, then hashing is the data structure of
choice.

Hashing applications are abundant. Compilers use hash tables to keep track of
declared variables in source code. The data structure is known as a symbol table.
Hash tables are the ideal application for this problem. Identifiers are typically short,
so the hash function can be computed quickly, and alphabetizing the variables is often
unnecessary.

Exercises

A hash table is useful for any graph theory problem where the nodes have real names
instead of numbers. Here, as the input is read, vertices are assigned integers from 1 onward
by order of appearance. Again, the input is likely to have large groups of alphabetized
entries. For example, the vertices could be computers. Then if one particular installation
lists its computers as ibml, ibm2, ibm3, ..., there could be a dramatic effect on efficiency if
a search tree is used.

A third common use of hash tables is in programs that play games. As the program
searches through different lines of play, it keeps track of positions it has seen by comput-
ing a hash function based on the position (and storing its move for that position). If the
same position recurs, usually by a simple transposition of moves, the program can avoid
expensive recomputation. This general feature of all game-playing programs is known as
the transposition table.

Yet another use of hashing is in online spelling checkers. If misspelling detection (as
opposed to correction) is important, an entire dictionary can be prehashed and words can
be checked in constant time. Hash tables are well suited for this, because it is not important
to alphabetize words; printing out misspellings in the order they occurred in the document
is certainly acceptable.

Hash tables are often used to implement caches, both in software (for instance, the
cache in your Internet browser) and in hardware (for instance, the memory caches in
modern computers). They are also used in hardware implementations of routers.

We close this chapter by returning to the word puzzle problem of Chapter 1. If the
second algorithm described in Chapter 1 is used, and we assume that the maximum word
size is some small constant, then the time to read in the dictionary containing W words
and put it in a hash table is O(W). This time is likely to be dominated by the disk I/O and
not the hashing routines. The rest of the algorithm would test for the presence of a word
for each ordered quadruple (row, column, orientation, number of characters). As each lookup
would be O(1), and there are only a constant number of orientations (8) and characters
per word, the running time of this phase would be O(R - C). The total running time would
be O(R - C+ W), which is a distinct improvement over the original O(R - C - W). We could
make further optimizations, which would decrease the running time in practice; these are
described in the exercises.

Exercises

5.1 Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function
h(x) = x (mod () 10), show the resulting
a. separate chaining hash table
b. hash table using linear probing
c¢. hash table using quadratic probing
d. hash table with second hash function hy(x) =7 — (x mod 7)

5.2 Show the result of rehashing the hash tables in Exercise 5.1.

5.3 Write a program to compute the number of collisions required in a long ran-
dom sequence of insertions using linear probing, quadratic probing, and double
hashing.

237

238

Chapter 5 Hashing

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

O 0o ~ & Lt A W N =

— =
[)

12

A large number of deletions in a separate chaining hash table can cause the table
to be fairly empty, which wastes space. In this case, we can rehash to a table half
as large. Assume that we rehash to a larger table when there are twice as many
elements as the table size. How empty should the table be before we rehash to a
smaller table?

Reimplement separate chaining hash tables using a vector of singly linked lists
instead of vectors.

The isEmpty routine for quadratic probing has not been written. Can you implement
it by returning the expression currentSize==0?

In the quadratic probing hash table, suppose that instead of inserting a new item

into the location suggested by findPos, we insert it into the first inactive cell on the

search path (thus, it is possible to reclaim a cell that is marked deleted, potentially
saving space).

a. Rewrite the insertion algorithm to use this observation. Do this by having
findPos maintain, with an additional variable, the location of the first inactive
cell it encounters.

b. Explain the circumstances under which the revised algorithm is faster than the
original algorithm. Can it be slower?

Suppose instead of quadratic probing, we use “cubic probing”; here the ith probe
is at hash(x) + i*. Does cubic probing improve on quadratic probing?

Using a standard dictionary, and a table size that approximates a load factor of 1,
compare the number of collisions produced by the hash function in Figure 5.4 and
the hash function in Figure 5.55.

What are the advantages and disadvantages of the various collision resolution
strategies?

Suppose that to mitigate the effects of secondary clustering we use as the collision
resolution function f(i) = i - r(hash(x)), where hash(x) is the 32-bit hash value
(not yet scaled to a suitable array index), and r(y) = [48271y(mod (2°! — 1))

/**

* FNV-la hash routine for string objects.

*/

unsigned int hash(const string & key, int tableSize)

{

}

unsigned int hashVal = 2166136261;

for(char ch : key)
hashVal = (hashVal "~ ch)* 16777619;

return hashVal % tableSize;

Figure 5.55 Alternative hash function for Exercise 5.9.

Exercises 239

mod TableSize. (Section 10.4.1 describes a method of performing this calculation
without overflows, but it is unlikely that overflow matters in this case.) Explain
why this strategy tends to avoid secondary clustering, and compare this strategy
with both double hashing and quadratic probing.

5.12 Rehashing requires recomputing the hash function for all items in the hash table.
Since computing the hash function is expensive, suppose objects provide a hash
member function of their own, and each object stores the result in an addi-
tional data member the first time the hash function is computed for it. Show
how such a scheme would apply for the Employee class in Figure 5.8, and explain
under what circumstances the remembered hash value remains valid in each
Employee.

5.13 Write a program to implement the following strategy for multiplying two sparse
polynomials Py, P, of size M and N, respectively. Each polynomial is represented
as a list of objects consisting of a coefficient and an exponent. We multiply each
term in Py by a term in P; for a total of MN operations. One method is to sort these
terms and combine like terms, but this requires sorting MN records, which could
be expensive, especially in small-memory environments. Alternatively, we could
merge terms as they are computed and then sort the result.

a. Write a program to implement the alternative strategy.
b. If the output polynomial has about O(M + N) terms, what is the running time
of both methods?

*5.14 Describe a procedure that avoids initializing a hash table (at the expense of
memory).

5.15 Suppose we want to find the first occurrence of a string P1P; - - - Py in a long input
string A1 A - - - Ay. We can solve this problem by hashing the pattern string, obtain-
ing a hash value Hp, and comparing this value with the hash value formed from
AjAy - Ap, AdAs - - Apg1,A3As - - Ay, and so on until Ay p41AN—kt2 - - AN
If we have a match of hash values, we compare the strings character by character
to verify the match. We return the position (in A) if the strings actually do match,
and we continue in the unlikely event that the match is false.

*a. Show that if the hash value of AjAj4 - - - Ajtxr—1 is known, then the hash value
of Aix1Ai42 - - - Aiqr, can be computed in constant time.

b. Show that the running time is O(k + N) plus the time spent refuting false

matches.

c. Show that the expected number of false matches is negligible.

d. Write a program to implement this algorithm.

e. Describe an algorithm that runs in O(k + N) worst-case time.

**f. Describe an algorithm that runs in O(N/k) average time.

*

5.16 A nonstandard C++ extension adds syntax that allows a switch statement to work
with the string type (instead of the primitive integer types). Explain how hash
tables can be used by the compiler to implement this language addition.

5.17 An (old-style) Basic program consists of a series of statements numbered in ascend-

ing order. Control is passed by use of a goto or gosub and a statement number. Write
a program that reads in a legal BAsiC program and renumbers the statements so

240

Chapter 5 Hashing

5.18

5.19

5.20

5.21

5.22

5.23

that the first starts at number F and each statement has a number D higher than
the previous statement. You may assume an upper limit of N statements, but the
statement numbers in the input might be as large as a 32-bit integer. Your program
must run in linear time.

a. Implement the word puzzle program using the algorithm described at the end
of the chapter.

b. We can get a big speed increase by storing, in addition to each word W, all of
W prefixes. (If one of W’ prefixes is another word in the dictionary, it is stored
as a real word.) Although this may seem to increase the size of the hash table
drastically, it does not, because many words have the same prefixes. When a scan
is performed in a particular direction, if the word that is looked up is not even
in the hash table as a prefix, then the scan in that direction can be terminated
early. Use this idea to write an improved program to solve the word puzzle.

c. If we are willing to sacrifice the sanctity of the hash table ADT, we can speed up
the program in part (b) by noting that if, for example, we have just computed
the hash function for “excel,” we do not need to compute the hash function for
“excels” from scratch. Adjust your hash function so that it can take advantage of
its previous calculation.

d. In Chapter 2, we suggested using binary search. Incorporate the idea of using
prefixes into your binary search algorithm. The modification should be simple.
Which algorithm is faster?

Under certain assumptions, the expected cost of an insertion into a hash table with
secondary clustering is given by 1/(1—1)—A—In(1—2). Unfortunately, this formula
is not accurate for quadratic probing. However, assuming that it is, determine the
following;

a. the expected cost of an unsuccessful search

b. the expected cost of a successtul search

Implement a generic Map that supports the insert and Tookup operations. The
implementation will store a hash table of pairs (key, definition). You will Tookup
a definition by providing a key. Figure 5.56 provides the Map specification (minus
some details).

Implement a spelling checker by using a hash table. Assume that the dictionary
comes from two sources: an existing large dictionary and a second file containing
a personal dictionary. Output all misspelled words and the line numbers on which
they occur. Also, for each misspelled word, list any words in the dictionary that are
obtainable by applying any of the following rules:

a. Add one character.

b. Remove one character.

c. Exchange adjacent characters.

Prove Markov’s Inequality: If X is any random variable and a > 0, then
Pr(|X| = a) < E(|X])/a. Show how this inequality can be applied to Theorems 5.2
and 5.3.

If a hopscotch table with parameter MAX_DIST has load factor 0.5, what is the
approximate probability that an insertion requires a rehash?

—_ —
— O O 0 N LW N =

N N — — b b
— O O 0 Ny LW

22

References

template <typename HashedObj, typename Object>
class Pair

{
HashedObj key;
Object def;
// Appropriate Constructors, etc.

}s

template <typename HashedObj, typename Object>
class Dictionary

{
public:
Dictionary();

void insert(const HashedObj & key, const Object & definition);
const Object & Tookup(const HashedObj & key) const;

bool isEmpty() const;

void makeEmpty();

private:
HashTable<Pair<HashedObj,0bject>> items;
1

Figure 5.56 Dictionary skeleton for Exercise 5.20

5.24 Implement a hopscotch hash table and compare its performance with linear
probing, separate chaining, and cuckoo hashing.

5.25 TImplement the classic cuckoo hash table in which two separate tables are main-
tained. The simplest way to do this is to use a single array and modify the hash
function to access either the top half or the bottom half.

5.26 Extend the classic cuckoo hash table to use d hash functions.

5.27 Show the result of inserting the keys 10111101, 00000010, 10011011, 10111110,
01111111, 01010001, 10010110, 00001011, 11001111, 10011110, 11011011,
00101011, 01100001, 11110000, 01101111 into an initially empty extendible
hashing data structure with M = 4.

5.28 Write a program to implement extendible hashing. If the table is small enough to
fit in main memory, how does its performance compare with separate chaining and
open addressing hashing?

References

Despite the apparent simplicity of hashing, much of the analysis is quite difficult, and there
are still many unresolved questions. There are also many interesting theoretical issues.

241

242

Chapter 5 Hashing

Hashing dates to at least 1953, when H. P Luhn wrote an internal IBM memorandum
that used separate chaining hashing. Early papers on hashing are [11] and [32]. A wealth of
information on the subject, including an analysis of hashing with linear probing under the
assumption of totally random and independent hashing, can be found in [25]. More recent
results have shown that linear probing requires only 5-independent hash functions [31].
An excellent survey on early classic hash tables methods is [28]; [29] contains suggestions,
and pitfalls, for choosing hash functions. Precise analytic and simulation results for sep-
arate chaining, linear probing, quadratic probing, and double hashing can be found in
[19]. However, due to changes (improvements) in computer architecture and compilers,
simulation results tend to quickly become dated.

An analysis of double hashing can be found in [20] and [27]. Yet another collision
resolution scheme is coalesced hashing, described in [33]. Yao [37] has shown the uniform
hashing, in which no clustering exists, is optimal with respect to cost of a successful search,
assuming that items cannot move once placed.

Universal hash functions were first described in [5] and [35]; the latter paper intro-
duces the “Carter-Wegman trick” of using Mersenne prime numbers to avoid expensive
mod operations. Perfect hashing is described in [16], and a dynamic version of perfect
hashing was described in [8]. [12] is a survey of some classic dynamic hashing schemes.

The ©(logN/loglog N) bound on the length of the longest list in separate chaining
was shown (in precise form) in [18]. The “power of two choices,” showing that when
the shorter of two randomly selected lists is chosen, then the bound on the length of the
longest list is lowered to only ®(loglog N), was first described in [2]. An early example
of the power of two choices is [4]. The classic work on cuckoo hashing is [30]; since the
initial paper, a host of new results have appeared that analyze the amount of independence
needed in the hash functions and describe alternative implementations [7], [34], [15],
[101, [23], [24], [1], [6], [9] and [17]. Hopscotch hashing appeared in [21].

Extendible hashing appears in [13], with analysis in [14] and [36].

Exercise 5.15 (a—d) is from [22]. Part (e) is from [26], and part () is from [3]. The
FNV-1a hash function described in Exercise 5.9 is due to Fowler, Noll, and Vo.

1. Y. Arbitman, M. Naor, and G. Segev, “De-Amortized Cuckoo Hashing: Provable Worst-Case
Performance and Experimental Results,” Proceedings of the 36th International Colloquium on
Automata, Languages and Programming (2009), 107-118.

2. Y. Azar, A. Broder, A. Karlin, and E. Upfal, “Balanced Allocations,” SIAM Journal of
Computing, 29 (1999), 180-200.

3. R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm,” Communications of the
ACM, 20 (1977), 762-772.

4. A. Broder and M. Mitzenmacher, “Using Multiple Hash Functions to Improve IP Lookups,”
Proceedings of the Twentieth IEEE INFOCOM (2001), 1454-1463.

5. J. L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,” Journal of Computer
and System Sciences, 18 (1979), 143-154.

6. J. Cohen and D. Kane, “Bounds on the Independence Required for Cuckoo Hashing,”
preprint.

7. L. Devroye and P Morin, “Cuckoo Hashing: Further Analysis,” Information Processing Letters,
86 (2003), 215-219.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

References

. M. Dietzfelbinger, A. R. Karlin, K. Melhorn, E Meyer auf der Heide, H. Rohnert, and
R. E. Tarjan, “Dynamic Perfect Hashing: Upper and Lower Bounds,” SIAM Journal on
Computing, 23 (1994), 738-761.

. M. Dietzfelbinger and U. Schellbach, “On Risks of Using Cuckoo Hashing with Simple

Universal Hash Classes,” Proceedings of the Twentieth Annual ACM-SIAM Symposium on

Discrete Algorithms (2009), 795-804.

M. Dietzfelbinger and C. Weidling, “Balanced Allocation and Dictionaries with Tightly

Packed Constant Size Bins,” Theoretical Computer Science, 380 (2007), 47-68.

I. Dumey, “Indexing for Rapid Random-Access Memory,” Computers and Automation, 5

(1956), 6-9.

R. J. Enbody and H. C. Du, “Dynamic Hashing Schemes,” Computing Surveys, 20 (1988),

85-113.

R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible Hashing—A Fast Access

Method for Dynamic Files,” ACM Transactions on Database Systems, 4 (1979), 315-344.

P. Flajolet, “On the Performance Evaluation of Extendible Hashing and Trie Searching,” Acta

Informatica, 20 (1983), 345-3609.

D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, “Space Efficient Hash Tables with Worst

Case Constant Access Time,” Theory of Computing Systems, 38 (2005), 229-248.

M. L. Fredman, J. Komlos, and E. Szemeredi, “Storing a Sparse Table with O(1) Worst Case

Access Time,” Journal of the ACM, 31 (1984), 538-544.

A. Frieze, P Melsted, and M. Mitzenmacher, “An Analysis of Random-Walk Cuckoo

Hashing,” Proceedings of the Twelfth International Workshop on Approximation Algorithms in

Combinatorial Optimization (APPROX) (2009), 350-364.

G. Gonnet, “Expected Length of the Longest Probe Sequence in Hash Code Searching,”

Journal of the Association for Computing Machinery, 28 (1981), 289-304.

G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, 2d ed.,

Addison-Wesley, Reading, Mass., 1991.

L. J. Guibas and E. Szemeredi, “The Analysis of Double Hashing,” Journal of Computer and

System Sciences, 16 (1978), 226-274.

M. Herlihy, N. Shavit, and M. Tzafrir, “Hopscotch Hashing,” Proceedings of the Twenty-Second

International Symposium on Distributed Computing (2008), 350-364.

R. M. Karp and M. O. Rabin, “Efficient Randomized Pattern-Matching Algorithms,” Aiken

Computer Laboratory Report TR-31-81, Harvard University, Cambridge, Mass., 1981.

A. Kirsch and M. Mitzenmacher, “The Power of One Move: Hashing Schemes for

Hardware,” Proceedings of the 27th IEEE International Conference on Computer Communications
(INFOCOM) (2008), 106-110.

A. Kirsch, M. Mitzenmacher, and U. Wieder, “More Robust Hashing: Cuckoo Hashing

with a Stash,” Proceedings of the Sixteenth Annual European Symposium on Algorithms (2008),

611-622.

D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, 2d ed., Addison-

Wesley, Reading, Mass., 1998.

D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast Pattern Matching in Strings,” SIAM Journal

on Computing, 6 (1977), 323-350.

G. Lueker and M. Molodowitch, “More Analysis of Double Hashing,” Proceedings of the
Twentieth ACM Symposium on Theory of Computing (1988), 354-359.

W. D. Maurer and T. G. Lewis, “Hash Table Methods,” Computing Surveys, 7 (1975), 5-20.

243

244

Ch

29

30.

31.

32.

33.

34.

35.

36.

37

apter 5 Hashing

. B.J. McKenzie, R. Harries, and T. Bell, “Selecting a Hashing Algorithm,” Software—Practice
and Experience, 20 (1990), 209-224.

R. Pagh and E F Rodler, “Cuckoo Hashing,” Journal of Algorithms, 51 (2004), 122—144.

M. Pitrascu and M. Thorup, “On the k-Independence Required by Linear Probing and
Minwise Independence,” Proceedings of the 37th International Colloquium on Automata,
Languages, and Programming (2010), 715-726.

W. W. Peterson, “Addressing for Random Access Storage,” IBM Journal of Research and
Development, 1 (1957), 130-146.

J. S. Vitter, “Implementations for Coalesced Hashing,” Communications of the ACM, 25
(1982), 911-926.

B. Vocking, “How Asymmetry Helps Load Balancing,” Journal of the ACM, 50 (2003),
568-589.

M. N. Wegman and]. Carter, “New Hash Functions and Their Use in Authentication and
Set Equality,” Journal of Computer and System Sciences, 22 (1981), 265-279.

A. C.Yao, “A Note on the Analysis of Extendible Hashing,” Information Processing Letters, 11
(1980), 84-86.

. A. C. Yao, “Uniform Hashing Is Optimal,” Journal of the ACM, 32 (1985), 687-693.

E cuapter 6

Priority Queues (Heaps)

Although jobs sent to a printer are generally placed on a queue, this might not always be
the best thing to do. For instance, one job might be particularly important, so it might
be desirable to allow that job to be run as soon as the printer is available. Conversely, if,
when the printer becomes available, there are several 1-page jobs and one 100-page job, it
might be reasonable to make the long job go last, even if it is not the last job submitted.
(Unfortunately, most systems do not do this, which can be particularly annoying at times.)

Similarly, in a multiuser environment, the operating system scheduler must decide
which of several processes to run. Generally, a process is allowed to run only for a fixed
period of time. One algorithm uses a queue. Jobs are initially placed at the end of the
queue. The scheduler will repeatedly take the first job on the queue, run it until either it
finishes or its time limit is up, and place it at the end of the queue if it does not finish.
This strategy is generally not appropriate, because very short jobs will seem to take a long
time because of the wait involved to run. Generally, it is important that short jobs finish
as fast as possible, so these jobs should have precedence over jobs that have already been
running. Furthermore, some jobs that are not short are still very important and should also
have precedence.

This particular application seems to require a special kind of queue, known as a
priority queue. In this chapter, we will discuss. ..

* Efficient implementation of the priority queue ADT.
* Uses of priority queues.

* Advanced implementations of priority queues.

The data structures we will see are among the most elegant in computer science.

6.1 Model

A priority queue is a data structure that allows at least the following two operations:
insert, which does the obvious thing; and deleteMin, which finds, returns, and removes
the minimum element in the priority queue.! The insert operation is the equivalent of
enqueue, and deleteMin is the priority queue equivalent of the queue’s dequeue operation.

! The C++ code provides two versions of deleteMin. One removes the minimum; the other removes the
minimum and stores the removed value in an object passed by reference.

245

246

Chapter 6 Priority Queues (Heaps)

leteMin .y i
delete Priority Queue Insert

Figure 6.1 Basic model of a priority queue

As with most data structures, it is sometimes possible to add other operations, but
these are extensions and not part of the basic model depicted in Figure 6.1.

Priority queues have many applications besides operating systems. In Chapter 7, we
will see how priority queues are used for external sorting. Priority queues are also impor-
tant in the implementation of greedy algorithms, which operate by repeatedly finding a
minimum; we will see specific examples in Chapters 9 and 10. In this chapter, we will see
a use of priority queues in discrete event simulation.

6.2 Simple Implementations

There are several obvious ways to implement a priority queue. We could use a simple
linked list, performing insertions at the front in O(1) and traversing the list, which requires
O(N) time, to delete the minimum. Alternatively, we could insist that the list be kept always
sorted; this makes insertions expensive (O(N)) and deleteMins cheap (O(1)). The former is
probably the better idea of the two, based on the fact that there are never more deleteMins
than insertions.

Another way of implementing priority queues would be to use a binary search tree.
This gives an O(log N) average running time for both operations. This is true in spite of the
fact that although the insertions are random, the deletions are not. Recall that the only ele-
ment we ever delete is the minimum. Repeatedly removing a node that is in the left subtree
would seem to hurt the balance of the tree by making the right subtree heavy. However,
the right subtree is random. In the worst case, where the deleteMins have depleted the
left subtree, the right subtree would have at most twice as many elements as it should.
This adds only a small constant to its expected depth. Notice that the bound can be made
into a worst-case bound by using a balanced tree; this protects one against bad insertion
sequences.

Using a search tree could be overkill because it supports a host of operations that are
not required. The basic data structure we will use will not require links and will support
both operations in O(log N) worst-case time. Insertion will actually take constant time on
average, and our implementation will allow building a priority queue of N items in linear
time, if no deletions intervene. We will then discuss how to implement priority queues to
support efficient merging. This additional operation seems to complicate matters a bit and
apparently requires the use of a linked structure.

6.3 Binary Heap

6.3 Binary Heap

The implementation we will use is known as a binary heap. Its use is so common for
priority queue implementations that, in the context of priority queues, when the word heap
is used without a qualifier, it is generally assumed to be referring to this implementation
of the data structure. In this section, we will refer to binary heaps merely as heaps. Like
binary search trees, heaps have two properties, namely, a structure property and a heap-
order property. As with AVL trees, an operation on a heap can destroy one of the properties,
so a heap operation must not terminate until all heap properties are in order. This turns
out to be simple to do.

6.3.1 Structure Property

A heap is a binary tree that is completely filled, with the possible exception of the bottom
level, which is filled from left to right. Such a tree is known as a complete binary tree.
Figure 6.2 shows an example.

It is easy to show that a complete binary tree of height h has between 2" and 2"+ — 1
nodes. This implies that the height of a complete binary tree is [log N], which is clearly
O(logN).

An important observation is that because a complete binary tree is so regular, it can be
represented in an array and no links are necessary. The array in Figure 6.3 corresponds to

the heap in Figure 6.2.

Figure 6.2 A complete binary tree

A|B|C|D]J|E|F G | H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6.3 Array implementation of complete binary tree

247

248

Chapter 6 Priority Queues (Heaps)

1 template <typename Comparable>

2 class BinaryHeap

3

4 pubTlic:

5 explicit BinaryHeap(int capacity = 100);

6 explicit BinaryHeap(const vector<Comparable> & items);

7

8 bool isEmpty() const;

9 const Comparable & findMin() const;
10
11 void insert(const Comparable & x);
12 void insert(Comparable && X);
13 void deleteMin();
14 void deleteMin(Comparable & minItem);
15 void makeEmpty();

16
17 private:

18 int currentSize; // Number of elements in heap
19 vector<Comparable> array; // The heap array
20
21 void buildHeap();
22 void percolateDown(int hole);
23}

Figure 6.4 Class interface for priority queue

For any element in array position i, the left child is in position 2i, the right child is in
the cell after the left child (2i + 1), and the parent is in position |i/2]. Thus, not only are
links not required, but the operations required to traverse the tree are extremely simple
and likely to be very fast on most computers. The only problem with this implementation
is that an estimate of the maximum heap size is required in advance, but typically this is
not a problem (and we can resize if needed). In Figure 6.3 the limit on the heap size is 13
elements. The array has a position 0; more on this later.

A heap data structure will, then, consist of an array (of Comparable objects) and an
integer representing the current heap size. Figure 6.4 shows a priority queue interface.

Throughout this chapter, we shall draw the heaps as trees, with the implication that an
actual implementation will use simple arrays.

6.3.2 Heap-Order Property

The property that allows operations to be performed quickly is the heap-order property.
Since we want to be able to find the minimum quickly, it makes sense that the smallest
element should be at the root. If we consider that any subtree should also be a heap, then
any node should be smaller than all of its descendants.

6.3 Binary Heap

Figure 6.5 Two complete trees (only the left tree is a heap)

Applying this logic, we arrive at the heap-order property. In a heap, for every node X,
the key in the parent of X is smaller than (or equal to) the key in X, with the exception
of the root (which has no parent).? In Figure 6.5 the tree on the left is a heap, but the tree
on the right is not (the dashed line shows the violation of heap order).

By the heap-order property, the minimum element can always be found at the root.
Thus, we get the extra operation, findMin, in constant time.

6.3.3 Basic Heap Operations

It is easy (both conceptually and practically) to perform the two required operations. All
the work involves ensuring that the heap-order property is maintained.

insert
To insert an element X into the heap, we create a hole in the next available location, since
otherwise, the tree will not be complete. If X can be placed in the hole without violating
heap order, then we do so and are done. Otherwise, we slide the element that is in the
hole’s parent node into the hole, thus bubbling the hole up toward the root. We continue
this process until X can be placed in the hole. Figure 6.6 shows that to insert 14, we create
a hole in the next available heap location. Inserting 14 in the hole would violate the heap-
order property, so 31 is slid down into the hole. This strategy is continued in Figure 6.7
until the correct location for 14 is found.

This general strategy is known as a percolate up; the new element is percolated up
the heap until the correct location is found. Insertion is easily implemented with the code
shown in Figure 6.8.

2 Analogously we can declare a (max) heap, which enables us to efficiently find and remove the maximum
element by changing the heap-order property. Thus, a priority queue can be used to find either a minimum
or a maximum, but this needs to be decided ahead of time.

249

Figure 6.7 The remaining two steps to insert 14 in previous heap

1 /**

2 * Insert item x, allowing duplicates.

3 */

4 void insert(const Comparable & x)

5 {

6 if(currentSize == array.size() - 1)

7 array.resize(array.size() * 2);

8

9 // Percolate up

10 int hole = ++currentSize;

11 Comparable copy = x;

12

13 array[0] = std::move(copy);

14 for(;3 x < array[hole / 2]; hole /=2)
15 array[hole] = std::move(array[hole /2]);
16 array[hole] = std::move(array[0]);
17 }

Figure 6.8 Procedure to insert into a binary heap

6.3 Binary Heap

We could have implemented the percolation in the insert routine by performing
repeated swaps until the correct order was established, but a swap requires three assign-
ment statements. If an element is percolated up d levels, the number of assignments
performed by the swaps would be 3d. Our method uses d + 1 assignments.

If the element to be inserted is the new minimum, it will be pushed all the way to the
top. At some point, hole will be 1 and we will want to break out of the loop. We could do
this with an explicit test, or we can put a copy of the inserted item in position 0 in order
to make the loop terminate. We elect to place X into position 0.

The time to do the insertion could be as much as O(log N), if the element to be inserted
is the new minimum and is percolated all the way to the root. On average, the percolation
terminates early; it has been shown that 2.607 comparisons are required on average to
perform an insert, so the average insert moves an element up 1.607 levels.

deleteMin

deleteMins are handled in a similar manner as insertions. Finding the minimum is easy;
the hard part is removing it. When the minimum is removed, a hole is created at the root.
Since the heap now becomes one smaller, it follows that the last element X in the heap
must move somewhere in the heap. If X can be placed in the hole, then we are done. This
is unlikely, so we slide the smaller of the hole’ children into the hole, thus pushing the hole
down one level. We repeat this step until X can be placed in the hole. Thus, our action is
to place X in its correct spot along a path from the root containing minimum children.

In Figure 6.9 the left figure shows a heap prior to the deleteMin. After 13 is removed,
we must now try to place 31 in the heap. The value 31 cannot be placed in the hole,
because this would violate heap order. Thus, we place the smaller child (14) in the hole,
sliding the hole down one level (see Fig. 6.10). We repeat this again, and since 31 is larger
than 19, we place 19 into the hole and create a new hole one level deeper. We then place
26 in the hole and create a new hole on the bottom level since, once again, 31 is too large.
Finally, we are able to place 31 in the hole (Fig. 6.11). This general strategy is known as a
percolate down. We use the same technique as in the insert routine to avoid the use of
swaps in this routine.

A frequent implementation error in heaps occurs when there are an even number of
elements in the heap, and the one node that has only one child is encountered. You must

(13) (O
(14 1) — (9 (16)
i) @) @ (6 1 @) ©
ONDIONE)) @9 () 3

Figure 6.9 Creation of the hole at the root

251

252

Chapter 6 Priority Queues (Heaps)

@) (16
19 @) @ 6
6 9 ()

Figure 6.10 Next two steps in deleteMin

Figure 6.11 Last two steps in deleteMin

make sure not to assume that there are always two children, so this usually involves an extra
test. In the code depicted in Figure 6.12, we've done this test at line 40. One extremely
tricky solution is always to ensure that your algorithm thinks every node has two children.
Do this by placing a sentinel, of value higher than any in the heap, at the spot after the heap
ends, at the start of each percolate down when the heap size is even. You should think very
carefully before attempting this, and you must put in a prominent comment if you do use
this technique. Although this eliminates the need to test for the presence of a right child,
you cannot eliminate the requirement that you test when you reach the bottom, because
this would require a sentinel for every leaf.

The worst-case running time for this operation is O(logN). On average, the element
that is placed at the root is percolated almost to the bottom of the heap (which is the level
it came from), so the average running time is O(log N).

6.3.4 Other Heap Operations

Notice that although finding the minimum can be performed in constant time, a heap
designed to find the minimum element (also known as a (min)heap) is of no help whatso-
ever in finding the maximum element. In fact, a heap has very little ordering information,

1 /**
2 * Remove the minimum item.
3 * Throws UnderflowException if empty.
4 */
5 void deleteMin()
6 {
7 if(isEmpty())
8 throw UnderflowException{ };
9
10 array[1] = std::move(array[currentSize--]);
11 percolateDown(1);
12 }
13
14 /**
15 * Remove the minimum item and place it in minItem.
16 * Throws UnderflowException if empty.
17 */
18 void deleteMin(Comparable & minItem)
19 {
20 if(isEmpty())
21 throw UnderflowException{ };
22
23 minltem = std::move(array[1]);
24 array[1] = std::move(array[currentSize--]);
25 percolateDown(1);
26 }
27
28 /**
29 * Internal method to percolate down in the heap.
30 * hole is the index at which the percolate begins.
31 */
32 void percolateDown(int hole)
33 {
34 int child;
35 Comparable tmp = std::move(array[hole]);
36
37 for(; hole * 2 <= currentSize; hole = child)
38 {
39 child = hole * 2;
40 if(child != currentSize && array[child + 1] < array[child])
41 ++child;
42 if(array[child] < tmp)
43 array[hole] = std::move(array[child]);
44 else
45 break;
46 }
47 array[hole] = std::move(tmp);
48 }

Figure 6.12 Method to perform deleteMin in a binary heap

254

Chapter 6 Priority Queues (Heaps)

Figure 6.13 A very large complete binary tree

so there is no way to find any particular element without a linear scan through the entire
heap. To see this, consider the large heap structure (the elements are not shown) in
Figure 6.13, where we see that the only information known about the maximum element
is that it is at one of the leaves. Half the elements, though, are contained in leaves, so this is
practically useless information. For this reason, if it is important to know where elements
are, some other data structure, such as a hash table, must be used in addition to the heap.
(Recall that the model does not allow looking inside the heap.)

If we assume that the position of every element is known by some other method,
then several other operations become cheap. The first three operations below all run in
logarithmic worst-case time.

decreaseKey

The decreaseKey(p,A) operation lowers the value of the item at position p by a positive
amount A. Since this might violate the heap order, it must be fixed by a percolate up. This
operation could be useful to system administrators: They can make their programs run
with highest priority.

increaseKey

The increaseKey(p, A) operation increases the value of the item at position p by a positive
amount A. This is done with a percolate down. Many schedulers automatically drop the
priority of a process that is consuming excessive Cpu time.

remove

The remove(p) operation removes the node at position p from the heap. This is done by
first performing decreasekey(p,00) and then performing deleteMin(). When a process

6.3 Binary Heap

is terminated by a user (instead of finishing normally), it must be removed from the
priority queue.

buildHeap

The binary heap is sometimes constructed from an initial collection of items. This con-
structor takes as input N items and places them into a heap. Obviously, this can be
done with N successive inserts. Since each insert will take O(1) average and O(log N)
worst-case time, the total running time of this algorithm would be O(N) average but
O(Nlog N) worst-case. Since this is a special instruction and there are no other operations
intervening, and we already know that the instruction can be performed in linear aver-
age time, it is reasonable to expect that with reasonable care a linear time bound can be
guaranteed.

The general algorithm is to place the N items into the tree in any order, maintaining the
structure property. Then, if percolateDown(i) percolates down from node i, the buildHeap
routine in Figure 6.14 can be used by the constructor to create a heap-ordered tree.

The first tree in Figure 6.15 is the unordered tree. The seven remaining trees in
Figures 6.15 through 6.18 show the result of each of the seven percolateDowns. Each
dashed line corresponds to two comparisons: one to find the smaller child and one to
compare the smaller child with the node. Notice that there are only 10 dashed lines
in the entire algorithm (there could have been an 11th—where?) corresponding to 20
comparisons.

To bound the running time of buildHeap, we must bound the number of dashed lines.
This can be done by computing the sum of the heights of all the nodes in the heap,
which is the maximum number of dashed lines. What we would like to show is that this
sum is O(N).

1 explicit BinaryHeap(const vector<Comparable> & items)
2 : array(items.size() + 10), currentSize{ items.size() }
3 {

4 for(int i = 0; i < items.size(); ++i)

5 array[i + 1] = items[i];

6 buildHeap();

7 }

8

9 /**
10 * Establish heap order property from an arbitrary
11 * arrangement of items. Runs in Tinear time.
12 */
13 void buildHeap()
14 {
15 for(int i = currentSize / 25 i > 0; --i)
16 percolateDown(1);
17 }

Figure 6.14 buildHeap and constructor

255

256 Chapter 6 Priority Queues (Heaps)

Figure 6.17 Left: after percolateDown(4); right: after percolateDown(3)

Theorem 6.1
For the perfect binary tree of height h containing 21 —1 nodes, the sum of the heights
of the nodes is 2" — 1 — (h + 1).

Proof

It is easy to see that this tree consists of 1 node at height h, 2 nodes at height h — 1, 22
nodes at height h — 2, and in general 2! nodes at height h — i. The sum of the heights
of all the nodes is then

6.4 Applications of Priority Queues

Figure 6.18 Left: after percolateDown(2); right: after percolateDown(1)

h
S=> 2h-1
i=0
=h+2h—D+4h—-2)+8h—=3)+16(h—4) +---+2"11) (6.1
Multiplying by 2 gives the equation
2S=2h+4(h— 1) +8h—2)+ 16(h —3) + --- + 2"(1) (6.2)

We subtract these two equations and obtain Equation (6.3). We find that certain terms
almost cancel. For instance, we have 2h —2(h— 1) =2, 4(h— 1) —4(h—2) = 4, and
so on. The last term in Equation (6.2), 2", does not appear in Equation (6.1); thus,
it appears in Equation (6.3). The first term in Equation (6.1), h, does not appear in
Equation (6.2); thus, —h appears in Equation (6.3). We obtain

S=—h+2+4+484- 42" 42" =" - -G+ D) 6.3)
which proves the theorem.

A complete tree is not a perfect binary tree, but the result we have obtained is an upper
bound on the sum of the heights of the nodes in a complete tree. Since a complete tree has
between 2" and 2h+! nodes, this theorem implies that this sum is O(N), where N is the
number of nodes.

Although the result we have obtained is sufficient to show that buildHeap is linear, the
bound on the sum of the heights is not as strong as possible. For a complete tree with
N = 2" nodes, the bound we have obtained is roughly 2N. The sum of the heights can
be shown by induction to be N — b(N), where b(N) is the number of 1s in the binary
representation of N.

6.4 Applications of Priority Queues

We have already mentioned how priority queues are used in operating systems design.
In Chapter 9, we will see how priority queues are used to implement several graph algo-
rithms efficiently. Here we will show how to use priority queues to obtain solutions to two
problems.

257

258

Chapter 6 Priority Queues (Heaps)

6.4.1 The Selection Problem

The first problem we will examine is the selection problem from Section 1.1. Recall that the
input is a list of N elements, which can be totally ordered, and an integer k. The selection
problem is to find the kth largest element.

Two algorithms were given in Chapter 1, but neither is very efficient. The first algo-
rithm, which we shall call algorithm 1A, is to read the elements into an array and sort them,
returning the appropriate element. Assuming a simple sorting algorithm, the running time
is O(N?). The alternative algorithm, 1B, is to read k elements into an array and sort them.
The smallest of these is in the kth position. We process the remaining elements one by one.
As an element arrives, it is compared with the kth element in the array. If it is larger, then
the kth element is removed, and the new element is placed in the correct place among the
remaining k — 1 elements. When the algorithm ends, the element in the kth position is the
answer. The running time is O(N-k) (why?). If k = [N/21, then both algorithms are O(N?).
Notice that for any k, we can solve the symmetric problem of finding the (N — k + Dth
smallest element, so k = [N/2] is really the hardest case for these algorithms. This also
happens to be the most interesting case, since this value of k is known as the median.

We give two algorithms here, both of which run in O(NlogN) in the extreme case of
k = [N/27, which is a distinct improvement.

Algorithm 6A

For simplicity, we assume that we are interested in finding the kth smallest element.
The algorithm is simple. We read the N elements into an array. We then apply the
buildHeap algorithm to this array. Finally, we perform k deleteMin operations. The last
element extracted from the heap is our answer. It should be clear that by changing the
heap-order property, we could solve the original problem of finding the kth largest element.

The correctness of the algorithm should be clear. The worst-case timing is O(N) to
construct the heap, if buildHeap is used, and O(log N) for each deleteMin. Since there are k
deleteMins, we obtain a total running time of O(N + klogN). If k = O(N/log N), then the
running time is dominated by the buildHeap operation and is O(N). For larger values of k,
the running time is O(klog N). If k = [N/2], then the running time is ®(Nlog N).

Notice that if we run this program for k = N and record the values as they leave the
heap, we will have essentially sorted the input file in O(NlogN) time. In Chapter 7, we
will refine this idea to obtain a fast sorting algorithm known as heapsort.

Algorithm 6B

For the second algorithm, we return to the original problem and find the kth largest ele-
ment. We use the idea from algorithm 1B. At any point in time we will maintain a set S
of the k largest elements. After the first k elements are read, when a new element is read
it is compared with the kth largest element, which we denote by Si,. Notice that Sy, is the
smallest element in S. If the new element is larger, then it replaces Sy, in S. S will then have
a new smallest element, which may or may not be the newly added element. At the end of
the input, we find the smallest element in S and return it as the answer.

This is essentially the same algorithm described in Chapter 1. Here, however, we will
use a heap to implement S. The first k elements are placed into the heap in total time O(k)
with a call to buildHeap. The time to process each of the remaining elements is O(1), to test

6.4 Applications of Priority Queues

if the element goes into S, plus O(logk), to delete Sy and insert the new element if this is
necessary. Thus, the total time is O(k + (N — k)logk) = O(Nlogk). This algorithm also
gives a bound of ®(NlogN) for finding the median.

In Chapter 7, we will see how to solve this problem in O(N) average time. In
Chapter 10, we will see an elegant, albeit impractical, algorithm to solve this problem
in O(N) worst-case time.

6.4.2 Event Simulation

In Section 3.7.3, we described an important queuing problem. Recall that we have a sys-
tem, such as a bank, where customers arrive and wait in a line until one of k tellers is
available. Customer arrival is governed by a probability distribution function, as is the ser-
vice time (the amount of time to be served once a teller is available). We are interested
in statistics such as how long on average a customer has to wait or how long the line
might be.

With certain probability distributions and values of k, these answers can be computed
exactly. However, as k gets larger, the analysis becomes considerably more difficult, so it is
appealing to use a computer to simulate the operation of the bank. In this way, the bank
officers can determine how many tellers are needed to ensure reasonably smooth service.

A simulation consists of processing events. The two events here are (a) a customer
arriving and (b) a customer departing, thus freeing up a teller.

We can use the probability functions to generate an input stream consisting of ordered
pairs of arrival time and service time for each customer, sorted by arrival time. We do not
need to use the exact time of day. Rather, we can use a quantum unit, which we will refer
to as a tick.

One way to do this simulation is to start a simulation clock at zero ticks. We then
advance the clock one tick at a time, checking to see if there is an event. If there is, then we
process the event(s) and compile statistics. When there are no customers left in the input
stream and all the tellers are free, then the simulation is over.

The problem with this simulation strategy is that its running time does not depend
on the number of customers or events (there are two events per customer), but instead
depends on the number of ticks, which is not really part of the input. To see why this is
important, suppose we changed the clock units to milliticks and multiplied all the times
in the input by 1,000. The result would be that the simulation would take 1,000 times
longer!

The key to avoiding this problem is to advance the clock to the next event time at each
stage. This is conceptually easy to do. At any point, the next event that can occur is either
(@) the next customer in the input file arrives or (b) one of the customers at a teller leaves.
Since all the times when the events will happen are available, we just need to find the event
that happens nearest in the future and process that event.

If the event is a departure, processing includes gathering statistics for the departing
customer and checking the line (queue) to see whether there is another customer waiting.
If so, we add that customer, process whatever statistics are required, compute the time
when that customer will leave, and add that departure to the set of events waiting to
happen.

259

260

Chapter 6 Priority Queues (Heaps)

If the event is an arrival, we check for an available teller. If there is none, we place the
arrival on the line (queue); otherwise we give the customer a teller, compute the customer’s
departure time, and add the departure to the set of events waiting to happen.

The waiting line for customers can be implemented as a queue. Since we need to find
the event nearest in the future, it is appropriate that the set of departures waiting to happen
be organized in a priority queue. The next event is thus the next arrival or next departure
(whichever is sooner); both are easily available.

It is then straightforward, although possibly time-consuming, to write the simulation
routines. If there are C customers (and thus 2C events) and k tellers, then the running time
of the simulation would be O(Clog(k + 1)) because computing and processing each event
takes O(log H), where H = k + 1 is the size of the heap.?

6.5 d-Heaps

Binary heaps are so simple that they are almost always used when priority queues are
needed. A simple generalization is a d-heap, which is exactly like a binary heap except that
all nodes have d children (thus, a binary heap is a 2-heap).

Figure 6.19 shows a 3-heap. Notice that a d-heap is much shallower than a binary heap,
improving the running time of inserts to O(log; N). However, for large d, the deleteMin
operation is more expensive, because even though the tree is shallower, the minimum of d
children must be found, which takes d — 1 comparisons using a standard algorithm. This
raises the time for this operation to O(dlog, N). If d is a constant, both running times are, of
course, O(log N). Although an array can still be used, the multiplications and divisions to
find children and parents are now by d, which, unless d is a power of 2, seriously increases
the running time, because we can no longer implement division by a bit shift. d-heaps are
interesting in theory, because there are many algorithms where the number of insertions is
much greater than the number of deleteMins (and thus a theoretical speedup is possible).
They are also of interest when the priority queue is too large to fit entirely in main memory.

Figure 6.19 A d-heap (d = 3)

3 We use O(Clog(k + 1)) instead of O(Clogk) to avoid confusion for the k = 1 case.

6.6 Leftist Heaps

In this case, a d-heap can be advantageous in much the same way as B-trees. Finally, there
is evidence suggesting that 4-heaps may outperform binary heaps in practice.

The most glaring weakness of the heap implementation, aside from the inability to per-
form finds, is that combining two heaps into one is a hard operation. This extra operation
is known as a merge. There are quite a few ways to implement heaps so that the running
time of a merge is O(log N). We will now discuss three data structures, of various complex-
ity, that support the merge operation efficiently. We will defer any complicated analysis until
Chapter 11.

6.6 Leftist Heaps

It seems difficult to design a data structure that efficiently supports merging (that is, pro-
cesses a merge in o(N) time) and uses only an array, as in a binary heap. The reason for
this is that merging would seem to require copying one array into another, which would
take ®(N) time for equal-sized heaps. For this reason, all the advanced data structures that
support efficient merging require the use of a linked data structure. In practice, we can
expect that this will make all the other operations slower.

Like a binary heap, a leftist heap has both a structural property and an ordering prop-
erty. Indeed, a leftist heap, like virtually all heaps used, has the same heap-order property
we have already seen. Furthermore, a leftist heap is also a binary tree. The only difference
between a leftist heap and a binary heap is that leftist heaps are not perfectly balanced, but
actually attempt to be very unbalanced.

6.6.1 Leftist Heap Property

We define the null path length, npl(X), of any node X to be the length of the shortest path
from X to a node without two children. Thus, the npl of a node with zero or one child is
0, while npl(nul1ptr) = —1. In the tree in Figure 6.20, the null path lengths are indicated
inside the tree nodes.

Notice that the null path length of any node is 1 more than the minimum of the null
path lengths of its children. This applies to nodes with less than two children because the
null path length of nullptris —1.

The leftist heap property is that for every node X in the heap, the null path length of
the left child is at least as large as that of the right child. This property is satisfied by only
one of the trees in Figure 6.20, namely, the tree on the left. This property actually goes
out of its way to ensure that the tree is unbalanced, because it clearly biases the tree to get
deep toward the left. Indeed, a tree consisting of a long path of left nodes is possible (and
actually preferable to facilitate merging)—hence the name leftist heap.

Because leftist heaps tend to have deep left paths, it follows that the right path ought
to be short. Indeed, the right path down a leftist heap is as short as any in the heap.
Otherwise, there would be a path that goes through some node X and takes the left child.
Then X would violate the leftist property.

Theorem 6.2
A leftist tree with r nodes on the right path must have at least 2" — 1 nodes.

261

262

Chapter 6 Priority Queues (Heaps)

Figure 6.20 Null path lengths for two trees; only the left tree is leftist

Proof
The proof is by induction. If r = 1, there must be at least one tree node. Otherwise,
suppose that the theorem is true for 1,2, ..., r. Consider a leftist tree with r + 1 nodes

on the right path. Then the root has a right subtree with r nodes on the right path, and
a left subtree with at least r nodes on the right path (otherwise it would not be leftist).
Applying the inductive hypothesis to these subtrees yields a minimum of 2" — 1 nodes
in each subtree. This plus the root gives at least 2'T! — 1 nodes in the tree, proving the
theorem.

From this theorem, it follows immediately that a leftist tree of N nodes has a right path
containing at most [log(N + 1)] nodes. The general idea for the leftist heap operations is
to perform all the work on the right path, which is guaranteed to be short. The only tricky
part is that performing inserts and merges on the right path could destroy the leftist heap
property. It turns out to be extremely easy to restore the property.

6.6.2 Leftist Heap Operations

The fundamental operation on leftist heaps is merging. Notice that insertion is merely a
special case of merging, since we may view an insertion as a merge of a one-node heap with
a larger heap. We will first give a simple recursive solution and then show how this might
be done nonrecursively. Our input is the two leftist heaps, H; and H;, in Figure 6.21. You
should check that these heaps really are leftist. Notice that the smallest elements are at the
roots. In addition to space for the data and left and right pointers, each node will have an
entry that indicates the null path length.

If either of the two heaps is empty, then we can return the other heap. Otherwise, to
merge the two heaps, we compare their roots. First, we recursively merge the heap with the
larger root with the right subheap of the heap with the smaller root. In our example, this
means we recursively merge H, with the subheap of H; rooted at 8, obtaining the heap in
Figure 6.22.

Since this tree is formed recursively, and we have not yet finished the description of
the algorithm, we cannot at this point show how this heap was obtained. However, it is

6.6 Leftist Heaps

Figure 6.22 Result of merging H, with H; s right subheap

reasonable to assume that the resulting tree is a leftist heap, because it was obtained via a
recursive step. This is much like the inductive hypothesis in a proof by induction. Since we
can handle the base case (which occurs when one tree is empty), we can assume that the
recursive step works as long as we can finish the merge; this is rule 3 of recursion, which
we discussed in Chapter 1. We now make this new heap the right child of the root of H;
(see Fig. 6.23).

Although the resulting heap satisfies the heap-order property, it is not leftist because
the left subtree of the root has a null path length of 1 whereas the right subtree has a null
path length of 2. Thus, the leftist property is violated at the root. However, it is easy to see
that the remainder of the tree must be leftist. The right subtree of the root is leftist because
of the recursive step. The left subtree of the root has not been changed, so it too must still
be leftist. Thus, we need only to fix the root. We can make the entire tree leftist by merely
swapping the root’s left and right children (Fig. 6.24) and updating the null path length—
the new null path length is 1 plus the null path length of the new right child—completing

263

264

Chapter 6 Priority Queues (Heaps)

Figure 6.23 Result of attaching leftist heap of previous figure as H’s right child

the merge. Notice that if the null path length is not updated, then all null path lengths will
be 0, and the heap will not be leftist but merely random. In this case, the algorithm will
work, but the time bound we will claim will no longer be valid.

The description of the algorithm translates directly into code. The node class
(Fig. 6.25) is the same as the binary tree, except that it is augmented with the np1 (null
path length) data member. The leftist heap stores a pointer to the root as its data member.
We have seen in Chapter 4 that when an element is inserted into an empty binary tree,

Figure 6.24 Result of swapping children of H;’s root

1 template <typename Comparable>

2 class LeftistHeap

3 |

4 public:

5 LeftistHeap();

6 LeftistHeap(const LeftistHeap & rhs);

7 LeftistHeap(LeftistHeap && rhs);

8

9 ~LeftistHeap();

10

11 LeftistHeap & operator=(const LeftistHeap & rhs);

12 LeftistHeap & operator=(LeftistHeap && rhs);

13

14 bool isEmpty() const;

15 const Comparable & findMin() const;

16

17 void insert(const Co